×

Computation of Galois groups over function fields. (English) Zbl 0946.12002

Summary: Symmetric function theory provides a basis for computing Galois groups which is largely independent of the coefficient ring. An exact algorithm has been implemented over \(\mathbb{Q} (t_1,t_2,\dots ,t_m)\) in Maple for degree up to 8. A table of polynomials realizing each transitive permutation group of degree 8 as a Galois group over the rationals is included.

MSC:

12Y05 Computational aspects of field theory and polynomials (MSC2010)
12F10 Separable extensions, Galois theory
11R32 Galois theory
11R58 Arithmetic theory of algebraic function fields
12F12 Inverse Galois theory
11Y40 Algebraic number theory computations

Software:

PARI/GP; Maple
Full Text: DOI

References:

[1] Gregory Butler and John McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), no. 8, 863 – 911. · Zbl 0518.20003 · doi:10.1080/00927878308822884
[2] David Casperson and John McKay, Symmetric functions, \?-sets, and Galois groups, Math. Comp. 63 (1994), no. 208, 749 – 757. · Zbl 0839.05094
[3] -, ‘An ideal decomposition algorithm’, preliminary report, AMS Abstracts 13 (1992) 405.
[4] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. · Zbl 0786.11071
[5] J. Conway, A. Hulpke, J. McKay, ‘ On transitive permutation groups’ (to appear). · Zbl 0920.20001
[6] H. Darmon, private communication (1986).
[7] Henri Darmon and David Ford, Computational verification of \?\(_{1}\)\(_{1}\) and \?\(_{1}\)\(_{2}\) as Galois groups over \?, Comm. Algebra 17 (1989), no. 12, 2941 – 2943. · Zbl 0693.12010 · doi:10.1080/00927878908823887
[8] Franz-Peter Heider and Paulgerd Kolvenbach, The construction of \?\?(2,3)-polynomials, J. Number Theory 19 (1984), no. 3, 392 – 411. · Zbl 0566.12003 · doi:10.1016/0022-314X(84)90080-5
[9] A. Hulpke, Konstruktion transitiver Permutationsgruppen. PhD. thesis, RWTH-Aachen, Aachen, Germany, 1996. · Zbl 0955.20002
[10] T. W. Mattman, The computation of Galois groups over function fields. Master’s thesis, McGill University, Montréal, Québec, Canada, December 1992.
[11] B. Heinrich Matzat, Konstruktion von Zahl- und Funktionenkörpern mit vorgegebener Galoisgruppe, J. Reine Angew. Math. 349 (1984), 179 – 220 (German). · Zbl 0555.12005 · doi:10.1515/crll.1984.349.179
[12] J. McKay, ‘Advances in computational Galois theory’, in Computers in algebra, , Lecture notes in pure and applied mathematics., vol. 111, pp.99-101, (1988). CMP 90:14
[13] J. McKay and E. Regener, Actions of permutation groups on \?-sets, Comm. Algebra 13 (1985), no. 3, 619 – 630. · Zbl 0553.20001 · doi:10.1080/00927878508823180
[14] E. A. O’Brien, The groups of order 256, J. Algebra 143 (1991), no. 1, 219 – 235. · Zbl 0734.20001 · doi:10.1016/0021-8693(91)90261-6
[15] M. Olivier, Calcul des groupes de Galois de degré 8,9,10, et 11. Université Bordeaux I, 12 Oct. 1991 et 12 Fev. 1993.
[16] E. Skrzipczyk, Charaktertafeln von \(p\)-Gruppen. Diplomarbeit, Lehrstuhl D fur Mathematik, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany, 1992.
[17] L. Soicher, The computation of Galois groups. Master’s thesis, University of Concordia, Montréal, Québec, Canada, April 1981.
[18] G. Kolesova and J. McKay, Practical strategies for computing Galois groups, Computational group theory (Durham, 1982) Academic Press, London, 1984, pp. 297 – 299. L. H. Soicher, An algorithm for computing Galois groups, Computational group theory (Durham, 1982) Academic Press, London, 1984, pp. 291 – 296.
[19] Leonard Soicher and John McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), no. 3, 273 – 281. · Zbl 0579.12006 · doi:10.1016/0022-314X(85)90022-8
[20] Gene W. Smith, ‘Some Polynomials over \(\mathbb Q (t)\) and their Galois groups.’ (to appear in Math. Comp.). · Zbl 0962.11041
[21] R. P. Stauduhar, The automatic determination of Galois groups. Ph. D. Dissertation, University of California, Berkeley, 1969. · Zbl 0282.12004
[22] Richard P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973), 981 – 996. · Zbl 0282.12004
[23] Sh. Strelitz, On the Routh-Hurwitz problem, Amer. Math. Monthly 84 (1977), no. 7, 542 – 544. · Zbl 0374.30001 · doi:10.2307/2320017
[24] B. van der Waerden, Modern Algebra. Vol. I, Ungar, (1949) Chapter 7.61. · Zbl 0039.00902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.