×

Description of generalized continued fractions by finite automata. (English) Zbl 1315.11009

Borwein, Jonathan M. (ed.) et al., Number theory and related fields. In memory of Alf van der Poorten. Based on the proceedings of the international number theory conference, Newcastle, Australia, March 12–16, 2012. New York, NY: Springer (ISBN 978-1-4614-6641-3/hbk; 978-1-4614-6642-0/ebook). Springer Proceedings in Mathematics & Statistics 43, 321-339 (2013).
The author addresses the question of the behavior of continued fraction algorithms in terms of acceptance by finite automata. More precisely, call \(f: \mathbb R\to\mathbb Z\) a “real integer function” if \(\forall x\in\mathbb R\), \(|f(x)- x|<1\) and \(\forall n\in\mathbb R\), \(\forall j\in\mathbb Z\), \(f(x+j)= f(x)+ j\) (examples are the floor and the ceiling functions, and the nearest integer function). With such a function one can associate a continued fraction algorithm \(Af\) exactly the same way as in the classical case (that corresponds to \(f(x)= \lfloor x\rfloor\)).
The main theorem of this paper is that if \(f^{-1}(0)\) is a finite union of intervals, then the set of outputs of \(Af\) is recognized by a finite automaton if and only if all the endpoints of these intervals are rational or quadratic. In particular, the result holds for the usual, the ceiling, and the nearest integer continued fraction algorithms, as well as for the general Tanaka-Itô continued fraction algorithm [S. Tanaka and S. Itô, Tokyo J. Math. 4, 153–175 (1981; Zbl 0464.10038)] that corresponds to \(f(x)= \lfloor x-\alpha+ 1\rfloor\) with \(\alpha\in [{1\over 2},1]\).
For the entire collection see [Zbl 1266.11001].

MSC:

11A55 Continued fractions
11B85 Automata sequences
68R15 Combinatorics on words

Citations:

Zbl 0464.10038
Full Text: DOI

References:

[1] Allouche, J.-P., Automates finis en théorie des nombres, Exposition Math., 5, 239-266 (1987) · Zbl 0641.10041
[2] Beynon, W. M., A formal account of some elementary continued fraction algorithms, J. Algorithms, 4, 221-240 (1983) · Zbl 0522.68038 · doi:10.1016/0196-6774(83)90023-8
[3] Blumer, F., Über die verschiedenen Kettenbruchentwicklungen beliebiger reeller Zahlen und die periodischen Kettenbruchentwicklungen quadratischer Irrationalitäten, Acta Arith., 3, 3-63 (1939) · JFM 64.0149.02
[4] Brezinski, C., History of Continued Fractions and Padé Approximants (1991), New York: Springer, New York · Zbl 0714.01001 · doi:10.1007/978-3-642-58169-4
[5] Dajani, K.; Kraaikamp, C., The mother of all continued fractions, Colloq. Math., 84, Pt 1, 109-123 (2000) · Zbl 0961.11027
[6] Hopcroft, J. E.; Ullman, J. D., Introduction to Automata Theory, Languages, and Computation (1979), Boston: Addison-Wesley, Boston · Zbl 0426.68001
[7] A. Hurwitz, Über die Entwicklung complexer Grössen in Kettenbrüche. Acta Math. 11, 187-200 (1888) [= Werke, II, pp. 72-83] · JFM 20.0201.01
[8] A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwicklung reeller Grössen. Acta Math. 12, 367-405 (1889) [ = Werke, II, pp. 84-115] · JFM 21.0188.01
[9] Istrail, S., On formal construction of algebraic numbers of degree two, Rev. Roum. Math. Pures Appl., 22, 1235-1239 (1977) · Zbl 0395.68066
[10] D.E. Knuth, The Art of Computer Programming, V. II (Seminumerical Algorithms), 2nd edn (Addison-Wesley, Boston, 1981) · Zbl 0477.65002
[11] Lehner, J.; Abikoff, W.; Birman, J. S.; Kuiken, K., Semiregular continued fractions whose partial denominators are 1 or 2, The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry, and Special Functions, 407-410 (1994), New York: Amer. Math. Soc, New York · Zbl 0814.11008 · doi:10.1090/conm/169/01670
[12] E.E. McDonnell, Integer functions of complex numbers, with applications. IBM Philadelphia Scientific Center, Technical Report 320-3015, February 1973
[13] O. Perron, Die Lehre von den Kettenbrüchen, in Band I: Elementare Kettenbrüche (Teubner, 1977) · JFM 43.0283.04
[14] Raney, G. N., On continued fractions and finite automata, Math. Ann., 206, 265-283 (1973) · Zbl 0251.10024 · doi:10.1007/BF01355980
[15] J.O. Shallit, Integer functions and continued fractions. A.B. Thesis, Princeton University, 1979. Available at http://www.cs.uwaterloo.ca/ shallit/papers.html · Zbl 0404.10003
[16] Steinig, J., On the complete quotients of semi-regular continued fractions for quadratic irrationals, Arch. Math., 43, 224-228 (1984) · Zbl 0524.10004 · doi:10.1007/BF01247567
[17] Tanaka, S.; Ito, S., On a family of continued-fraction transformations and their ergodic properties, Tokyo J. Math., 4, 153-175 (1981) · Zbl 0464.10038 · doi:10.3836/tjm/1270215745
[18] Tietze, H., Über Kriterien für Konvergenz und Irrationalität unendlichen Kettenbrüche, Math. Annalen, 70, 236-265 (1911) · JFM 42.0246.01 · doi:10.1007/BF01461159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.