×

A short note on Helmholtz decompositions for bounded domains in \(\mathbb{R}^3\). (English) Zbl 1426.35075

Summary: In this short note we consider several widely used \(\mathsf{L}^2\)-orthogonal Helmholtz decompositions for bounded domains in \(\mathbb{R}^3\). It is well known that one part of the decompositions is a subspace of the space of functions with zero mean. We refine this global property into a local equivalent: we show that functions from these spaces have zero mean in every subdomain of specific decompositions of the domain.
An application of the zero mean properties is presented for convex domains. We introduce a specialized Poincaré-type inequality, and estimate the related unknown constant from above. The upper bound is derived using the upper bound for the Poincaré constant proven by Payne and Weinberger. This is then used to obtain a small improvement of upper bounds of two Maxwell-type constants originally proven by Pauly.
Although the two dimensional case is not considered, all derived results can be repeated in \(\mathbb{R}^2\) by similar calculations.

MSC:

35F15 Boundary value problems for linear first-order PDEs
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] Amrouche, C., Bernardi, C., Dauge, M., and Girault, V., Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823-864. https://doi.org/10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B · Zbl 0914.35094 · doi:10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
[2] Bebendorf, M., A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen 22 (2003), no. 4, 751-756. https://doi.org/10.4171/ZAA/1170 · Zbl 1057.26011 · doi:10.4171/ZAA/1170
[3] Filonov, N., On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator, St. Petersburg Math. J. 16 (2005), no. 2, 413-416. https://doi.org/10.1090/S1061-0022-05-00857-5 · Zbl 1078.35081 · doi:10.1090/S1061-0022-05-00857-5
[4] Grisvard, P., Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. · Zbl 0695.35060
[5] Leis, R., Initial boundary value problems in mathematical physics, B. G. Teubner, Stuttgart, 1986. https://doi.org/10.1007/978-3-663-10649-4 · Zbl 0599.35001 · doi:10.1007/978-3-663-10649-4
[6] Pauly, D., On constants in Maxwell inequalities for bounded and convex domains, J. Math. Sci. (N.Y.) 210 (2015), no. 6, 787-792. https://doi.org/10.1007/s10958-015-2590-3 · Zbl 1339.78002 · doi:10
[7] Pauly, D., On Maxwell’s and Poincaré’s constants, Discrete Contin. Dyn. Syst. Ser. S 8 (2015), no. 3, 607-618. https://doi.org/10.3934/dcdss.2015.8.607 · Zbl 1321.35226 · doi:10.3934/dcdss.2015.8.607
[8] Pauly, D., On the Maxwell constants in 3D, Math. Methods Appl. Sci. 40 (2017), no. 2, 435-447. https://doi.org/10.1002/mma.3324 · Zbl 1357.35012 · doi:10.1002/mma.3324
[9] Pauly, D., Solution theory, variational formulations, and functional a posteriori error estimates for general first order systems with applications to electro-magneto-statics and more, Numer. Funct. Anal. Optim. online (2019), 97 pp. https://doi.org/10.1080/01630563.2018.1490756 · Zbl 1429.35048 · doi:10.1080/01630563.2018.1490756
[10] Payne, L. E. and Weinberger, H. F., An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286-292. https://doi.org/10.1007/BF00252910 · Zbl 0099.08402 · doi:10.1007/BF00252910
[11] Repin, S., A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, vol. 4, Walter de Gruyter, Berlin, 2008. https://doi.org/10.1515/9783110203042 · Zbl 1162.65001 · doi:10.1515/9783110203042
[12] Weck, N., Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries, J. Math. Anal. Appl. 46 (1974), 410-437. https://doi.org/10.1016/0022-247X(74)90250-9 · Zbl 0281.35022 · doi:10-437.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.