×

Testing independence between two nonhomogeneous point processes in time. (English) Zbl 07480229

Summary: Point processes are often used to model the occurrence times of different phenomena, such as heatwaves or spike trains. Many of those problems require to study the independence between nonhommogeneous point processes in time, and this work develops three families of tests to assess that hypothesis. They can be applied to different types of processes, and all together they cover a wide range of situations appearing in real problems. The first family includes two tests for Poisson processes. The second family is based on the close point distance, and the third one on cross dependence functions. An extensive simulation study of the size and power of the tests is carried out and some practical rules to select the most appropriate test in different cases, are provided. The proposed tests are demonstrated on a real data application about the occurrence of extreme heat events in three Spanish locations.

MSC:

60Gxx Stochastic processes
60Hxx Stochastic analysis
62Mxx Inference from stochastic processes
62Pxx Applications of statistics
62-XX Statistics

Software:

IndTestPP; NHPoisson

References:

[1] Tramblay, Y.; Neppel, L.; Carreau, J., Non-stationary frequency analysis of heavy rainfall events in southern France, Hydrological Sci J, 58, 2, 280-294 (2013) · doi:10.1080/02626667.2012.754988
[2] Abaurrea, J.; Asín, J.; Cebrián, AC., Modeling and projecting the occurrence of bivariate extreme heat events using a non-homogeneous common Poisson shock process, Stoch Environ Res Risk Assess, 29, 309-322 (2015) · doi:10.1007/s00477-014-0953-9
[3] Møller, J.; Waagepetersen, R., Statistical inference and simulation for spatial point processes (2004), Boca Raton: CRC Press, Boca Raton · Zbl 1044.62101
[4] Cronie, O.; van Lieshout, MNM., Summary statistics for inhomogeneous marked point processes, Ann Inst Stat Math, 68, 4, 905-928 (2016) · Zbl 1400.62209 · doi:10.1007/s10463-015-0515-z
[5] Schlather, M.; Ribeiro, PJ; Diggle, PJ., Detecting dependence between marks and locations of marked point processes, J R Stat Soc B, 66, 1, 79-93 (2004) · Zbl 1061.62151 · doi:10.1046/j.1369-7412.2003.05343.x
[6] Guan, Y.; Afshartous, D., Test for independence between marks and points of marked point processes: a subsampling approach, Environ Ecol Stat, 14, 101-11 (2007) · doi:10.1007/s10651-007-0010-7
[7] Allard, D.; Brix, A.; Chadoeuf, J., Testing local independence between two point processes, Biometrics, 57, 508-17 (2001) · Zbl 1209.62196 · doi:10.1111/j.0006-341X.2001.00508.x
[8] Doguwa, SI., On correlations of neuronal spike discharges, J Stat Comput Simul, 47, 1-2, 11-24 (1993) · doi:10.1080/00949659308811507
[9] Tuleau-Malot, C.; Rouis, A.; Grammont, F., Multiple tests based on a gaussian approximation of the unitary events method with delayed coincidence count, Neural Comput, 26, 7, 1408-54 (2014) · Zbl 1416.92021 · doi:10.1162/NECO_a_00604
[10] Albert, M.; Bouret, Y.; Fromont, M., Bootstrap and permutation tests of independence for point processes, Ann Stat, 43, 6, 2537-2564 (2015) · Zbl 1327.62454 · doi:10.1214/15-AOS1351
[11] Dutilleul, P., Spatio-temporal heterogeneity: concepts and analyses (2011), Cambridge: Cambridge University Press, Cambridge
[12] Abaurrea, J.; Asín, J.; Cebrián, AC., A bootstrap test of independence between three temporal nonhomogeneous Poisson processes and its application to heat wave modeling, Environ Ecol Stat, 22, 1, 127-144 (2015) · doi:10.1007/s10651-014-0288-1
[13] Hennig, C.; Hausdorf, B., Distance-based parametric bootstrap tests for clustering of species ranges, Comput Stat Data Anal, 45, 4, 875-895 (2004) · Zbl 1429.62068 · doi:10.1016/S0167-9473(03)00091-4
[14] Hennig, C.; Lin, CJ., Flexible parametric bootstrap for testing homogeneity against clustering and assessing the number of clusters, Stat Comput, 25, 4, 821-833 (2015) · Zbl 1331.62308 · doi:10.1007/s11222-015-9566-5
[15] Myllymäki, M.; Mrkvicka, T.; Grabarnik, P., Global envelope tests for spatial processes, J R Stat Soc B, 79, 2, 381-404 (2017) · Zbl 1414.62404 · doi:10.1111/rssb.12172
[16] Li, CS; Lee, SM; Yeh, MS., A test for lack-of-fit of zero-inflated negative binomial models, J Stat Comput Simul, 89, 7, 1301-1321 (2019) · Zbl 07193781 · doi:10.1080/00949655.2019.1577856
[17] Caron, PO., A comparison of the type i error rates of three assessment methods for indirect effects, J Stat Comput Simul, 89, 8, 1343-1356 (2019) · Zbl 07193785 · doi:10.1080/00949655.2019.1577858
[18] Lotwick, HW; Silverman, BW., Methods for analysing spatial processes of several types of points, J R Stat Soc B, 44, 406-13 (1982)
[19] Dixon, PM.; El-Shaarawi, AH; Piegorsch, WW, Ripley’s K function, Encyclopedia of environmetrics, Vol. 3, 1796-803 (2002), Wiley Online Library
[20] Baddeley, AJ; Møller, J.; Waagepetersen, R., Non- and semi-parametric estimation of interaction in inhomogeneous point patterns, Stat Neerl, 54, 329-50 (2000) · Zbl 1018.62027 · doi:10.1111/1467-9574.00144
[21] Daley, D.; Vere-Jones, D., An introduction to the theory of point processes. vol ii: general theory and structure (2008), New York: Springer-Verlag, New York · Zbl 0657.60069
[22] Lindskog, P.; McNeil, A., Common Poisson shock models: applications to insurance and risk modelling, ASTIN Bull, 33, 209-38 (2003) · Zbl 1087.91030 · doi:10.1017/S0515036100013441
[23] Neyman, J.; Scott, EL., Statistical approach to problems of cosmology, J R Stat Soc B, 20, 1-43 (1958) · Zbl 0085.42906
[24] Keilson, J.; Servi, L., Networks of nonhomogeneous \(####\) systems, J Appl Probab, 31, 157-68 (1994) · Zbl 0805.60094 · doi:10.1017/S0021900200107041
[25] Isham, V., Dependent thinning of point processes, J Appl Probab, 17, 4, 987-95 (1980) · Zbl 0451.60056 · doi:10.2307/3213208
[26] de Miranda, JCS; Morettin, P., Estimation of the intensity of non-homogeneous point processes via wavelets, Ann Inst Stat Math, 63, 1221-1246 (2011) · Zbl 1230.62114 · doi:10.1007/s10463-010-0283-8
[27] Cebrián, AC; Abaurrea, J.; Asín, J., NHPoisson: an R package for fitting and validating nonhomogeneous Poisson processes, J Stat Softw, 64, 6, 1-25 (2015) · doi:10.18637/jss.v064.i06
[28] Dumanjug, CF; Barrios, EB; Lansangan, JR., Bootstrap procedures in a spatial-temporal model, J Stat Comput Simul, 80, 7, 809-822 (2010) · Zbl 1195.62030 · doi:10.1080/00949650902785209
[29] Abaurrea, J.; Asín, J.; Cebrián, A., Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60, Global Planetary Change, 161, 244-260 (2018) · doi:10.1016/j.gloplacha.2017.11.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.