×

Accelerating uncertainty quantification of groundwater flow modelling using a deep neural network proxy. (English) Zbl 1506.76170

Summary: Quantifying the uncertainty in model parameters and output is a critical component in model-driven decision support systems for groundwater management. This paper presents a novel algorithmic approach which fuses Markov Chain Monte Carlo (MCMC) and Machine Learning methods to accelerate uncertainty quantification for groundwater flow models. We formulate the governing mathematical model as a Bayesian inverse problem, considering model parameters as a random process with an underlying probability distribution. MCMC allows us to sample from this distribution, but it comes with some limitations: it can be prohibitively expensive when dealing with costly likelihood functions, subsequent samples are often highly correlated, and the standard Metropolis-Hastings algorithm suffers from the curse of dimensionality. This paper designs a Metropolis-Hastings proposal which exploits a deep neural network (DNN) approximation of a groundwater flow model, to significantly accelerate MCMC sampling. We modify a delayed acceptance (DA) model hierarchy, whereby proposals are generated by running short subchains using an inexpensive DNN approximation, resulting in a decorrelation of subsequent fine model proposals. Using a simple adaptive error model, we estimate and correct the bias of the DNN approximation with respect to the posterior distribution on-the-fly. The approach is tested on two synthetic examples; a isotropic two-dimensional problem, and an anisotropic three-dimensional problem. The results show that the cost of uncertainty quantification can be reduced by up to 50% compared to single-level MCMC, depending on the precomputation cost and accuracy of the employed DNN.

MSC:

76S05 Flows in porous media; filtration; seepage
65C20 Probabilistic models, generic numerical methods in probability and statistics
68T07 Artificial neural networks and deep learning

References:

[1] Anderson, M. P.; Woessner, W. W.; Hunt, R. J., Applied Groundwater Modeling: simulation of Flow and Advective Transport (2015), Academic Press: Academic Press London; San Diego, CA, oCLC: ocn921253555
[2] Woodbury, A. D.; Ulrych, T. J., A full-Bayesian approach to the groundwater inverse problem for steady state flow, Water Resour. Res., 36, 8, 2081-2093 (2000), URL http://doi.wiley.com/10.1029/2000WR900086
[3] Mariethoz, G.; Renard, P.; Caers, J., Bayesian inverse problem and optimization with iterative spatial resampling: ITERATIVE SPATIAL RESAMPLING, Water Resour. Res., 46, 11 (2010), URL http://doi.wiley.com/10.1029/2010WR009274
[4] de la Varga, M.; Wellmann, J. F., Structural geologic modeling as an inference problem: A Bayesian perspective, Interpretation, 4, 3, SM1-SM16 (2016), URL http://library.seg.org/doi/10.1190/INT-2015-0188.1
[5] Robert, C. P.; Casella, G., (Monte Carlo Statistical Methods. Monte Carlo Statistical Methods, Springer Texts in Statistics (2010), Springer: Springer New York, NY), oCLC: 837651914 · Zbl 1096.62003
[6] Higdon, D.; Lee, H.; Holloman, C., Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems, (Bayesian Statistics, Vol. 7 (2003), Oxford University Press.), 181-197
[7] Dodwell, T. J.; Ketelsen, C.; Scheichl, R.; Teckentrup, A. L., A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA J. Uncertain. Quantif., 3, 1, 1075-1108 (2015), URL http://epubs.siam.org/doi/10.1137/130915005 · Zbl 1330.65007
[8] Detommaso, G.; Dodwell, T.; Scheichl, R., Continuous level Monte Carlo and sample-adaptive model hierarchies (2018), arXiv:1802.07539 [math]. URL http://arxiv.org/abs/1802.07539
[9] Doherty, J., Calibration and Uncertainty Analysis for Complex Environmental Models (2015), oCLC: 991568728
[10] Peherstorfer, B.; Wilcox, K.; Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 3, 550-591 (2018) · Zbl 1458.65003
[11] Efendiev, Y.; Datta-Gupta, A.; Ginting, V.; Ma, X.; Mallick, B., An efficient two-stage Markov chain Monte Carlo method for dynamic data integration, Water Resour. Res., 41, 12 (2005), URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004WR003764
[12] Mondal, A.; Efendiev, Y.; Mallick, B.; Datta-Gupta, A., Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods, Adv. Water Resour., 33, 3, 241-256 (2010), URL https://linkinghub.elsevier.com/retrieve/pii/S0309170809001729
[13] Dostert, P.; Efendiev, Y.; Mohanty, B., Efficient uncertainty quantification techniques in inverse problems for Richards’ equation using coarse-scale simulation models, Adv. Water Resour., 32, 3, 329-339 (2009), URL https://linkinghub.elsevier.com/retrieve/pii/S0309170808002121
[14] Laloy, E.; Rogiers, B.; Vrugt, J. A.; Mallants, D.; Jacques, D., Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion: Speeding up MCMC simulation of a groundwater model, Water Resour. Res., 49, 5, 2664-2682 (2013), URL http://doi.wiley.com/10.1002/wrcr.20226
[15] Christen, J. A.; Fox, C., Markov chain Monte Carlo using an approximation, J. Comput. Graph. Statist., 14, 4, 795-810 (2005), URL http://www.tandfonline.com/doi/abs/10.1198/106186005X76983
[16] Cotter, S. L.; Roberts, G. O.; Stuart, A. M.; White, D., MCMC methods For functions: Modifying old algorithms to make them faster, Statist. Sci., 28, 3, 424-446 (2013), URL http://arxiv.org/abs/1202.0709 · Zbl 1331.62132
[17] Haario, H.; Saksman, E.; Tamminen, J., An adaptive metropolis algorithm, Bernoulli, 7, 2, 223 (2001), URL https://www.jstor.org/stable/3318737?origin=crossref · Zbl 0989.65004
[18] Cui, T.; Fox, C.; O’Sullivan, M. J., A eriori stochastic correction of reduced models in delayed acceptance MCMC, with application to multiphase subsurface inverse problems (2018), arXiv:1809.03176 [stat]. URL http://arxiv.org/abs/1809.03176
[19] Diersch, H.-J. G., FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media (2014), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg, URL http://link.springer.com/10.1007/978-3-642-38739-5
[20] Langtangen, H. P.; Logg, A., Solving PDEs in Python - The FEniCS Tutorial Volume I (2017)
[21] Harbaugh, A. W., MODFLOW-2005: The U.S. Geological Survey Modular Ground-Water Model-the Ground-Water Flow ProcessReport (2005), URL http://pubs.er.usgs.gov/publication/tm6A16
[22] Freeze, R. A., A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media, Water Resour. Res., 11, 5, 725-741 (1975), URL http://doi.wiley.com/10.1029/WR011i005p00725
[23] Kitterrød, N.-O.; Gottschalk, L., Simulation of normal distributed smooth fields by Karhunen-Loéve expansion in combination with kriging, Stoch. Hydrol. Hydraul., 11, 6, 459-482 (1997), URL http://link.springer.com/10.1007/BF02428429 · Zbl 0916.60049
[24] Gómez-Hernández, J.; Wen, X.-H., To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology, Adv. Water Resour., 21, 1, 47-61 (1998), URL http://linkinghub.elsevier.com/retrieve/pii/S0309170896000310
[25] Kerrou, J.; Renard, P.; Hendricks Franssen, H.-J.; Lunati, I., Issues in characterizing heterogeneity and connectivity in non-multiGaussian media, Adv. Water Resour., 31, 1, 147-159 (2008), URL https://linkinghub.elsevier.com/retrieve/pii/S0309170807001236
[26] Russo, D.; Bouton, M., Statistical analysis of spatial variability in unsaturated flow parameters, Water Resour. Res., 28, 7, 1911-1925 (1992), URL http://doi.wiley.com/10.1029/92WR00669
[27] Hoeksema, R. J.; Kitanidis, P. K., Analysis of the spatial structure of properties of selected aquifers, Water Resour. Res., 21, 4, 563-572 (1985), URL http://doi.wiley.com/10.1029/WR021i004p00563
[28] Dostert, P.; Efendiev, Y.; Hou, T.; Luo, W., Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification, J. Comput. Phys., 217, 1, 123-142 (2006), URL https://linkinghub.elsevier.com/retrieve/pii/S0021999106001380 · Zbl 1146.76637
[29] Marzouk, Y. M.; Najm, H. N., Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 228, 6, 1862-1902 (2009), URL https://linkinghub.elsevier.com/retrieve/pii/S0021999108006062 · Zbl 1161.65308
[30] Scarth, C.; Adhikari, S.; Cabral, P. H.; Silva, G. H.; Prado, A. P.d., Random field simulation over curved surfaces: Applications to computational structural mechanics, Comput. Methods Appl. Mech. Engrg., 345, 283-301 (2019), URL https://linkinghub.elsevier.com/retrieve/pii/S0045782518305309 · Zbl 1440.74439
[31] (Gelman, A., Bayesian Data Analysis. Bayesian Data Analysis, Texts in Statistical Science (2004), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, Fla) · Zbl 1039.62018
[32] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 6, 1087-1092 (1953), URL http://aip.scitation.org/doi/10.1063/1.1699114 · Zbl 1431.65006
[33] Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 13 (1970) · Zbl 0219.65008
[34] Katafygiotis, L.; Zuev, K., Geometric insight into the challenges of solving high-dimensional reliability problems, Probab. Eng. Mech., 23, 2-3, 208-218 (2008), URL https://linkinghub.elsevier.com/retrieve/pii/S0266892007000707
[35] Roberts, G. O.; Rosenthal, J. S., Examples of adaptive MCMC, J. Comput. Graph. Statist., 18, 2, 349-367 (2009), URL http://www.tandfonline.com/doi/abs/10.1198/jcgs.2009.06134
[36] Chollet, F., Keras (2015)
[37] Theano Development Team, F., Theano: A python framework for fast computation of mathematical expressions (2016), arXiv e-prints abs/1605.02688. URL http://arxiv.org/abs/1605.02688, 2016
[38] Hansen, T. M.; Cordua, K. S., Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion, Geophys. J. Int., 211, 10 (2017)
[39] Moghadas, D.; Behroozmand, A. A.; Christiansen, A. V., Soil electrical conductivity imaging using a neural network-based forward solver: Applied to large-scale Bayesian electromagnetic inversion, J. Appl. Geophys., 176, Article 104012 pp. (2020), URL https://linkinghub.elsevier.com/retrieve/pii/S0926985120300033
[40] Hastie, T.; Tibshirani, R.; Friedman, J. H., (The Elements of Statistical Learning: Data Mining, Inference, and Prediction. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics (2009), Springer: Springer New York, NY) · Zbl 1273.62005
[41] Hinton, G.; Srivastava, N.; Swersky, K., Neural Networks for Machine Learning, Lecture 6a: Overview of Mini-Batch Gradient Descent (2012), Coursera, University of Toronto
[42] Wolff, U., Monte Carlo errors with less errors, Comput. Phys. Comm., 176, 5, 383 (2007), URL http://arxiv.org/abs/hep-lat/0306017 · Zbl 1196.65149
[43] Kaipio, J.; Somersalo, E., Statistical inverse problems: Discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198, 2, 493-504 (2007), URL https://linkinghub.elsevier.com/retrieve/pii/S0377042705007296 · Zbl 1101.65008
[44] Hansen, T. M.; Cordua, K. S.; Jacobsen, B. H.; Mosegaard, K., Accounting for imperfect forward modeling in geophysical inverse problems — Exemplified for crosshole tomography, Geophysics, 79, 3, 22 (2014)
[45] Cui, T.; Fox, C.; O’Sullivan, M. J., Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm: ADAPTIVE DELAYED ACCEPTANCE METROPOLIS-HASTINGS ALGORITHM, Water Resour. Res., 47, 10 (2011), URL http://doi.wiley.com/10.1029/2010WR010352
[46] Köpke, C.; Irving, J.; Elsheikh, A. H., Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach, Adv. Water Resour., 116, 195-207 (2018), URL https://linkinghub.elsevier.com/retrieve/pii/S0309170817308308
[47] Brynjarsdóttir, J.; O’Hagan, A., Learning about physical parameters: The importance of model discrepancy, Inverse Problems, 30, 11, Article 114007 pp. (2014), URL http://stacks.iop.org/0266-5611/30/i=11/a=114007?key=crossref.7b886360dda7b385609c577ad82450aa · Zbl 1307.60042
[48] McKay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239-245 (1979), URL http://www.jstor.org/stable/1268522 · Zbl 0415.62011
[49] Morris, M. D.; Mitchell, T. J., Exploratory designs for computational experiments, J. Statist. Plann. Inference, 43, 3, 381-402 (1995), URL https://linkinghub.elsevier.com/retrieve/pii/037837589400035T · Zbl 0813.62065
[50] Lajaunie, C.; Courrioux, G.; Manuel, L., Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation, Math. Geol., 29, 4, 571-584 (1997), URL http://link.springer.com/10.1007/BF02775087
[51] de la Varga, M.; Schaaf, A.; Wellmann, F., GemPy 1.0: Open-source stochastic geological modeling and inversion, Geosci. Model Dev., 12, 1, 1-32 (2019), URL https://www.geosci-model-dev.net/12/1/2019/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.