×

A test for the parametric form of the variance function in a partial linear regression model. (English) Zbl 1140.62029

Summary: We consider the problem of testing for a parametric form of the variance function in a partial linear regression model. A new test is derived, which can detect local alternatives converging to the null hypothesis at a rate \(n^{-1/2}\) and is based on a stochastic process of the integrated variance function. We establish weak convergence to a Gaussian process under the null hypothesis, fixed and local alternatives. In the special case of testing for homoscedasticity the limiting process is a scaled Brownian bridge. We also compare the finite sample properties with a test based on an \(L^{2}\)-distance, which was recently proposed by J. You and G. Chen [Testing heteroscedasticity in partially linear regression models. Stat. Probab. Lett. 73, No. 1, 61–70 (2005; Zbl 1101.62033)].

MSC:

62G08 Nonparametric regression and quantile regression
62J05 Linear regression; mixed models
60F05 Central limit and other weak theorems
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G10 Nonparametric hypothesis testing

Citations:

Zbl 1101.62033

References:

[1] Aneiros-Pérez, G.; González-Manteiga, W.; Vieu, P., Estimation and testing in a partial linear regression model under long-memory dependence, Bernoulli, 10, 49-78 (2004) · Zbl 1040.62028
[2] Bianco, A.; Boente, G.; Martínez, E., Robust tests in semiparametric partly linear models, Scand. J. Statist., 33, 435-450 (2006) · Zbl 1114.62044
[3] Cook, R. D.; Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 70, 1-10 (1983) · Zbl 0502.62063
[4] Daniel, C.; Wood, F. S., Fitting Equations to Data: Computer Analysis of Multifactor Data (1999), Wiley: Wiley New York · Zbl 0998.65503
[5] Dette, H., Hetzler, B., 2006. A simple test for the parametric form of the variance function in nonparametric regression. Preprint, Ruhr-Universität-Bochum. Tentatively accepted for publication in Annals of the Institute of Statistical Mathematics \(\langle;\) http://www.ruhr-uni-bochum.de/mathematik3/research/index.html \(\rangle;\).; Dette, H., Hetzler, B., 2006. A simple test for the parametric form of the variance function in nonparametric regression. Preprint, Ruhr-Universität-Bochum. Tentatively accepted for publication in Annals of the Institute of Statistical Mathematics \(\langle;\) http://www.ruhr-uni-bochum.de/mathematik3/research/index.html \(\rangle;\).
[6] Dette, H.; Munk, A., Testing heteroscedasticity in nonparametric regression, J. R. Statist. Soc. Ser. B, 60, 693-708 (1998) · Zbl 0909.62035
[7] Dette, H.; Munk, A., A simple goodness-of-fit test for linear models under a random design assumption, Ann. Inst. Statist. Math., 50, 253-275 (1998) · Zbl 0903.62039
[8] Dette, H.; Munk, A.; Wagner, T., Estimating the variances in nonparametric regression—what is a reasonable choice?, J. R. Statist. Soc. Ser. B, 60, 751-764 (1998) · Zbl 0944.62041
[9] Diblasi, A.; Bowman, A., Testing for constant variance in a linear model, Statist. Probab. Lett., 33, 95-103 (1997) · Zbl 0901.62064
[10] Fan, J.; Gijbels, I., Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaption, J. R. Statist. Soc. B, 57, 371-394 (1995) · Zbl 0813.62033
[11] Fan, J.; Huang, L. S., Goodness-of-fit tests for parametric regression models, J. Am. Statist. Assoc., 96, 640-652 (2001) · Zbl 1017.62014
[12] Gao, J., Adaptive parametric test in a semiparametric regression model, Comm. Statist. Theory and Methods, 26, 787-800 (1997) · Zbl 0912.62043
[13] Gasser, T.; Sroka, L.; Jennen-Steinmetz, G., Residual variance and pattern in nonlinear regression, Biometrika, 73, 625-633 (1986) · Zbl 0649.62035
[14] González-Manteiga, W.; Aneiros-Pérez, G., Testing in partial linear regression models with dependent errors, J. Nonpar. Statist., 15, 93-111 (2003) · Zbl 1019.62056
[15] Green, P. J.; Silverman, B. W., Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach (1994), Chapman & Hall: Chapman & Hall London · Zbl 0832.62032
[16] Härdle, W.; Ling, H.; Gao, J., Partially Linear Models (2000), Physica-Verlag: Physica-Verlag Heidelberg · Zbl 0968.62006
[17] Hall, P.; Kay, J. W.; Titterington, D. M., Asymptotically optimal difference-based estimation of variance in nonparametric regression, Biometrika, 77, 521-528 (1990) · Zbl 1377.62102
[18] Koenker, R.; Bassett, G., Robust tests for heteroscedasticity based on regression quantiles, Econometrika, 50, 43-61 (1981) · Zbl 0482.62023
[19] Liero, H., Testing homoscedasticity in nonparametric regression, J. Nonpar. Statist., 15, 31-51 (2003) · Zbl 1019.62036
[20] Sacks, J.; Ylvisacker, D., Designs for regression problems with correlated errors III, Ann. Math. Statist., 41, 2057-2074 (1970) · Zbl 0234.62025
[21] Seber, G. A.F.; Wild, G. J., Nonlinear Regression (1989), Wiley: Wiley NY · Zbl 0721.62062
[22] Speckman, P., Kernel smoothing in partial linear models, J. R. Statist. Soc. Ser. B, 50, 413-436 (1988) · Zbl 0671.62045
[23] Yatchew, A., An elementary estimator for the partial linear model, Econom. Lett., 57, 135-143 (1997) · Zbl 0896.90052
[24] You, J.; Chen, G., Testing heteroscedasticity in partially linear regression models, Statist. Probab. Lett., 73, 61-70 (2005) · Zbl 1101.62033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.