×

Parametric polynomial preserving recovery on manifolds. (English) Zbl 1447.65134

This article is concerned with gradient recovery schemes for data defined on discretized manifolds. The approach adopted by authors does not require the tangent spaces of the exact manifolds and its superconvergence is guaranteed without the symmetric condition. Numerical experiments are included to support the theoretical findings.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
53C99 Global differential geometry

References:

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (New York), Wiley-Interscience, New York, 2000. · Zbl 1008.65076
[2] T. Aubin, Best constants in the Sobolev imbedding theorem: The Yamabe problem, in Seminar on Differential Geometry, Ann. of Math. Stud. 102, Princeton University Press, Princeton, NJ, 1982, pp. 173-184. · Zbl 0483.53041
[3] I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. · Zbl 0995.65501
[4] R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part I. Grids with superconvergence, SIAM J. Numer. Anal., 41 (2003), pp. 2294-2312, https://doi.org/10.1137/S003614290139874X. · Zbl 1058.65116
[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. · Zbl 1135.65042
[6] F. Camacho and A. Demlow, \(L_2\) and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces, IMA J. Numer. Anal., 35 (2015), pp. 1199-1227. · Zbl 1323.65113
[7] H. Chen, H. Guo, Z. Zhang, and Q. Zou, A \(C^0\) linear finite element method for two fourth-order eigenvalue problems, IMA J. Numer. Anal., 37 (2017), pp. 2120-2138. · Zbl 1433.65267
[8] L. Chen, Short implementation of bisection in MATLAB, in Recent Advances in Computational Sciences, World Scientific, Hackensack, NJ, 2008, pp. 318-332. · Zbl 1157.65502
[9] L. Chen, \(i\) FEM: An Innovative Finite Element Methods Package in MATLAB, Tech. rep., University of California at Irvine, Irvine, CA, 2009.
[10] A. Y. Chernyshenko and M. A. Olshanskii, An adaptive octree finite element method for PDEs posed on surfaces, Comput. Methods Appl. Mech. Engrg., 291 (2015), pp. 146-172. · Zbl 1425.65155
[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40, SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898719208. · Zbl 0999.65129
[12] A. Dedner and P. Madhavan, Adaptive discontinuous Galerkin methods on surfaces, Numer. Math., 132 (2016), pp. 369-398. · Zbl 1336.65189
[13] A. Dedner, P. Madhavan, and B. Stinner, Analysis of the discontinuous Galerkin method for elliptic problems on surfaces, IMA J. Numer. Anal., 33 (2013), pp. 952-973. · Zbl 1277.65095
[14] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 805-827, https://doi.org/10.1137/070708135. · Zbl 1195.65168
[15] A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal., 45 (2007), pp. 421-442, https://doi.org/10.1137/050642873. · Zbl 1160.65058
[16] A. Demlow and M. A. Olshanskii, An adaptive surface finite element method based on volume meshes, SIAM J. Numer. Anal., 50 (2012), pp. 1624-1647, https://doi.org/10.1137/110842235. · Zbl 1248.65122
[17] M. P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Boston, 1992; translated from the second Portuguese edition by Francis Flaherty. · Zbl 0752.53001
[18] G. Dong, B. Jüttler, O. Scherzer, and T. Takacs, Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces, Inverse Probl. Imaging, 11 (2017), pp. 221-246. · Zbl 1375.47002
[19] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106-1124, https://doi.org/10.1137/0733054. · Zbl 0854.65090
[20] Q. Du and L. Ju, Finite volume methods on spheres and spherical centroidal Voronoi meshes, SIAM J. Numer. Anal., 43 (2005), pp. 1673-1692, https://doi.org/10.1137/S0036142903425410. · Zbl 1099.65107
[21] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin, 1988, pp. 142-155. · Zbl 0663.65114
[22] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numer., 22 (2013), pp. 289-396. · Zbl 1296.65156
[23] J. Grande and A. Reusken, A higher order finite element method for partial differential equations on surfaces, SIAM J. Numer. Anal., 54 (2016), pp. 388-414, https://doi.org/10.1137/14097820X. · Zbl 1382.65398
[24] H. Guo, C. Xie, and R. Zhao, Superconvergent gradient recovery for virtual element methods, Math. Models Methods Appl. Sci., 29 (2019), pp. 2007-2031. · Zbl 1427.65360
[25] H. Guo and Z. Zhang, Gradient recovery for the Crouzeix-Raviart element, J. Sci. Comput., 64 (2015), pp. 456-476. · Zbl 1325.65153
[26] H. Guo, Z. Zhang, and R. Zhao, Hessian recovery for finite element methods, Math. Comp., 86 (2017), pp. 1671-1692. · Zbl 1361.65087
[27] H. Guo, Z. Zhang, and R. Zhao, Superconvergent two-grid methods for elliptic eigenvalue problems, J. Sci. Comput., 70 (2017), pp. 125-148. · Zbl 1365.65245
[28] H. Guo, Z. Zhang, and Q. Zou, A \(C^0\) linear finite element method for biharmonic problems, J. Sci. Comput., 74 (2018), pp. 1397-1422. · Zbl 1398.65300
[29] H. Guo, Z. Zhang, and Q. Zou, A \(C^0\) Linear Finite Element Method for Sixth Order Elliptic Equations, preprint, https://arxiv.org/abs/1804.03793, 2018.
[30] E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics 5, Courant Institute of Mathematical Sciences, New York University, New York; AMS, Providence, RI, 1999. · Zbl 0981.58006
[31] A. M. Lakhany, I. Marek, and J. R. Whiteman, Superconvergence results on mildly structured triangulations, Comput. Methods Appl. Mech. Engrg., 189 (2000), pp. 1-75. · Zbl 0969.65097
[32] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Grad. Texts in Math. 176, Springer-Verlag, New York, 1997. · Zbl 0905.53001
[33] J. Liang and H. Zhao, Solving partial differential equations on point clouds, SIAM J. Sci. Comput., 35 (2013), pp. A1461-A1486, https://doi.org/10.1137/120869730. · Zbl 1275.65080
[34] A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), pp. 1780-1800, https://doi.org/10.1137/S0036142903413002. · Zbl 1078.65098
[35] A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), pp. 769-798. · Zbl 1078.65108
[36] A. Naga and Z. Zhang, Function value recovery and its application in eigenvalue problems, SIAM J. Numer. Anal., 50 (2012), pp. 272-286, https://doi.org/10.1137/100797709. · Zbl 1246.65214
[37] A. Naga, Z. Zhang, and A. Zhou, Enhancing eigenvalue approximation by gradient recovery, SIAM J. Sci. Comput., 28 (2006), pp. 1289-1300, https://doi.org/10.1137/050640588. · Zbl 1148.65087
[38] M. A. Olshanskii and A. Reusken, A finite element method for surface PDEs: Matrix properties, Numer. Math., 114 (2010), pp. 491-520. · Zbl 1204.65136
[39] M. A. Olshanskii, A. Reusken, and J. Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 3339-3358, https://doi.org/10.1137/080717602. · Zbl 1204.58019
[40] M. A. Olshanskii and D. Safin, A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces, Math. Comp., 85 (2016), pp. 1549-1570. · Zbl 1335.65094
[41] L. Rineau and M. Yvinec, 3D surface mesh generation, in CGAL User and Reference Manual, CGAL Editorial Board, 4.9 ed., 2016, http://doc.cgal.org/4.9/Manual/packages.html#PkgSurfaceMesher3Summary. · Zbl 1134.65327
[42] H. Wei, L. Chen, and Y. Huang, Superconvergence and gradient recovery of linear finite elements for the Laplace-Beltrami operator on general surfaces, SIAM J. Numer. Anal., 48 (2010), pp. 1920-1943, https://doi.org/10.1137/100785016. · Zbl 1218.65122
[43] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), pp. 1139-1152. · Zbl 1050.65103
[44] M. Xu, H. Guo, and Q. Zou, Hessian recovery based finite element methods for the Cahn-Hilliard equation, J. Comput. Phys., 386 (2019), pp. 524-540. · Zbl 1452.65255
[45] Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput., 26 (2005), pp. 1192-1213, https://doi.org/10.1137/S1064827503402837. · Zbl 1078.65110
[46] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), pp. 1331-1364. · Zbl 0769.73084
[47] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33 (1992), pp. 1365-1382. · Zbl 0769.73085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.