×

Design of evolutionary cubic spline intelligent solver for nonlinear Painlevé-I transcendent. (English) Zbl 1492.65038

Summary: In this research paper, an innovative bio-inspired algorithm based on evolutionary cubic splines method (CSM) has been utilized to estimate the numerical results of nonlinear ordinary differential equation Painlevé-I. The computational mechanism is used to support the proposed technique CSM and optimize the obtained results with global search technique genetic algorithms (GAs) hybridized with sequential quadratic programming (SQP) for quick refinement. Painlevé-I is solved by the proposed technique CSM-GASQP. In this process, variation of splines is implemented for various scenarios. The CSM-GASQP produces an interpolated function that is continuous upto its second derivative. Also, splines proved to be stable than a single polynomial fitted to all points, and reduce wiggles between the tabulated points. This method provides a reliable and excellent procedure for adaptation of unknown coefficients of splines by searching globally exploiting the performance of GA-SQP algorithms. The convergence, exactness and accuracy of the proposed scheme are examined through the statistical analysis for the several independent runs.

MSC:

65D07 Numerical computation using splines
34A34 Nonlinear ordinary differential equations and systems
41A15 Spline approximation
Full Text: DOI

References:

[1] Painlevé, P., Acta Math.25, 1 (1902).
[2] Gambier, B., Acta Math.33, 1 (1910).
[3] Bassom, A. P., Clarkson, P. A. and Hicks, A. C., IMA J. Appl. Math.50, 167 (1993). · Zbl 0782.65099
[4] He, J. H., Int. J. Non-linear Mech.34, 699 (1999). · Zbl 1342.34005
[5] He, J. H., Int. J. Mod. Phys. B20, 1141 (2006). · Zbl 1102.34039
[6] Ablowitz, M. J. and Segur, H., Solitons and the Inverse Scattering Transform, Vol. 4 (Siam, 1981). · Zbl 0472.35002
[7] Tajiri, M. and Kawamoto, S., J. Phys. Soc. Jpn.51, 1678 (1982).
[8] Haberman, R., SIAM J. Appl. Math.37, 69 (1979). · Zbl 0417.34028
[9] Fokas, A. S., Its, A. R. and Kitaev, A. V., Commun. Math. Phys.142, 313 (1991). · Zbl 0742.35047
[10] Its, A. R., Kitaev, A. A. V. and Fokas, A. S., J. Math. Sci.73, 415 (1995).
[11] Ablowitz, M. J.et al., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Vol. 149 (Cambridge University Press, 1991). · Zbl 0762.35001
[12] Gromak, V. I., Laine, I. and Shimomura, S., Painlevi Differential Equations in the Complex Plane Walter de Gruyter (Berlin, New York, 2002), p. 303. · Zbl 1043.34100
[13] Dai, D. and Zhang, L., J. Math. Anal. Appl.368, 393 (2010). · Zbl 1200.34111
[14] Daalhuis, A. B. Olde, Proc. R. Soc. A Math. Phys. Eng. Sci.461, 3005 (2005). · Zbl 1206.34077
[15] Lee, S. Y., Teodorescu, R. and Wiegmann, P., Physica D Nonlinear Phenomena240, 1080 (2011). · Zbl 1218.76021
[16] Kudryashov, N. A., Phys. Lett. A224, 353 (1997).
[17] Kudryashov, N. A., J. Math. Phys.44, 6160 (2003). · Zbl 1063.34085
[18] Ali, I.et al., Int. J. Mod. Phys. B34, 2050283 (2020).
[19] Ma, Y. X.et al., Int. J. Mod. Phys. B35, 2150108 (2021).
[20] Rizvi, S. T.et al., Int. J. Mod. Phys. B35, 2150005 (2021).
[21] Muğan, U. and Jrad, F., J. Nonlinear Math. Phys.9, 282 (2002). · Zbl 1028.34082
[22] Fornberg, B. and Weideman, J. A. C., J. Comput. Phys.230, 5957 (2011). · Zbl 1220.65092
[23] Kudryashov, N. A., J. Phys. A Math. Gen.35, 4617 (2002). · Zbl 1066.34086
[24] Bekir, A. and Zahran, E. H., Int. J. Mod. Phys. B34, 2050270 (2020). · Zbl 1454.92005
[25] Ali, I.et al., Int. J. Mod. Phys. B36, 2150038 (2021).
[26] Kumar, S. and Kumar, D., Int. J. Mod. Phys. B34, 2050221 (2020). · Zbl 1451.35167
[27] Ahmad, I.et al., SpringerPlus5(1), 1866 (2016).
[28] Ahmad, I.et al., Neural Comput. Appl.29, 449 (2018).
[29] Ilyas, H.et al., Chin. J. Phys.72, 386 (2021).
[30] Du, M., Yang, S. and Chen, Q., Int. J. Mod. Phys. B35(06), 2150091 (2021).
[31] Ahmad, I.et al., Neural Comput. Appl.31, 9041 (2019).
[32] Ilyas, H.et al., Int. J. Hydrogen Energy46, 15322 (2021).
[33] Ahmad, I.et al., Chin. J. Phys.59, 641 (2019).
[34] Ilyas, H.et al., Int. Commun. Heat Mass Transf.123, 105196 (2021).
[35] Nguyen, T. L., Nguyen, N. T. and Hoang, L., Int. J. Mod. Phys. B34(22-24), 2040161 (2020).
[36] Raja, M. A. Z.et al., Neural Comput. Appl.29, 83 (2018).
[37] Shoaib, M.et al., Surf. Interfaces25, 101243 (2021).
[38] Uddin, I.et al., Surf. Interfaces24, 101107 (2021).
[39] Ilyas, H.et al., Int. J. Hydrogen Energy46, 4947 (2021).
[40] Tirmizi, I. A. and Haq, F., Int. J. High Performance Comput. Appl.21, 42 (2007).
[41] M. M. S. Tung, Spline approximations for systems of ordinary differential equations, Doctoral Dissertation (2013).
[42] Al-Towaiq, M. and Ala’yed, O., J. Interdisciplinary Math.17, 471 (2014).
[43] Karim, S. A. A., Rosli, M. A. M. and Mustafa, M. I. M., Appl. Math. Sci.8, 5083 (2014).
[44] Akram, G., J. Egyptian Math. Soc.23, 406 (2015). · Zbl 1327.65137
[45] He, S.et al., Chemom. Intell. Laboratory Syst.152, 1 (2016).
[46] Ahmad, N. and Deeba, K. F., J. Sci. Arts17, 401 (2017).
[47] Mirzaee, F. and Alipour, S., J. Comput. Appl. Math.366, 112440 (2020). · Zbl 1483.65221
[48] Ahmad, S. U. I.et al., Eur. Phys. J. Plus135, 1 (2020).
[49] Zadeh, L. A., Software11, 48 (1994).
[50] Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, 1992).
[51] John, H., Sci. Am.267, 44 (1992).
[52] Raja, M. A. Z.et al., Comput. Intell. Neurosci.2012, ID: 721867 (2012).
[53] Ahmad, I.et al., Neural Comput. Appl.31(1), 101 (2019).
[54] Raja, M. A. Z.et al., Eur. Phys. J. Plus133, 254 (2018).
[55] Yang, H. and Xia, Y., Mod. Phys. Lett. B33, 1950419 (2019).
[56] Xiong, P. Y.et al., Mod. Phys. Lett. B35, 2150342 (2021).
[57] Bhatti, M. M.et al., Mod. Phys. Lett. B34, 2050026 (2020).
[58] Hamid, A., Hashim and Khan, M., Mod. Phys. Lett. B33, 1950432 (2019).
[59] Hamid, A., Khan, M. and Hussain, A., Mod. Phys. Lett. B34, 2050101 (2020).
[60] Mehmood, A.et al., Neural Comput. Appl.32, 7121 (2020).
[61] Masood, Z.et al., Fut. Gen. Computer Syst.106, 43 (2020).
[62] Masood, Z.et al., Computers Security87, 101565 (2019).
[63] Sabir, Z.et al., Comput. Appl. Math.39, 1 (2020).
[64] Raja, M. A. Z.et al., J. Comput. Nonlinear Dyn.15, 12 (2020).
[65] Umar, M.et al., Results Phys.19, 103585 (2020).
[66] Umar, M.et al., Eur. Phys. J. Plus135, 403 (2020).
[67] Bukhari, A. H.et al., IEEE Access8, 71326 (2020).
[68] Ara, A.et al., Adv. Differ. Eq.2018, 8 (2018).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.