×

Hepp’s bound for Feynman graphs and matroids. (English) Zbl 1520.81076

In the article, the author puts forward a new graph (and matroid) invariant, the Hepp bound. This invariant is a rational number and behaves similarly to the Feynman period. Feynman periods are special cases of Feynman integrals which are of critical importance in perturbative quantum field theory (see [F. Brown, Commun. Number Theory Phys. 11, No. 3, 453–556 (2017; Zbl 1395.81117)] for a detailed account on Feynman periods).
The invariant provides a bound for the value of Feynman periods. This property was previously used for finiteness proofs in quantum field theory [K. Hepp, Commun. Math. Phys. 2, No. 4, 301–326 (1966; Zbl 1222.81219)]. The article establishes that the Hepp bound is left invariant under a highly nontrivial set of graph transformations that also leave the Feynman period invariant (see [O. Schnetz, Commun. Number Theory Phys. 4, No. 1, 1–47 (2010; Zbl 1202.81160)] for details of these transformations). The Hepp bound is interpreted geometrically as the volume of a specific polytope. Effective formulas and algorithms for the computation of the Hepp bound are proven. The author observes empirically that the Hepp bound’s value correlates with the Feynman period’s value for certain interesting sets of graphs.
The definition of the Hepp bound is motivated as a tropicalization of the Feynman period. The fact that the Hepp bound obeys similar combinatorial transformation rules as the Feynman period indicates that the Hepp bound is an appropriate tropical analog of the period.
What follows is a brief introduction of the main characters in this article. To a connected graph \(G\) with \(N\) edges, we can associate the Kirchhoff polynomial in the variables \(x_1,\ldots,x_{N}\), \[ \Psi_G = \sum_{T\subset G} \prod_{e\not \in T} x_e \in \mathbb Z[x_1,\ldots,x_N], \] where we sum over all spanning trees of \(G\). The following integral involving this polynomial is called the Feynman period, \(\mathcal P(G)\). It is a particular case of a Feynman integral in the parametric representation (see [N. Nakanishi, Graph theory and Feynman integrals. Gordon & Breach Science Publishers, New York, NY (1971; Zbl 0212.29203)] for details on (parametric) Feynman integrals). For each connected graph \(G\) and \(D \in \mathbb R\), we write \[ \mathcal{P}(G) = \int_{\mathbb R_{> 0} ^{N-1}} \left. \frac{d x_1 \cdots d x_{N-1}}{\Psi_{G}^{D/2}} \right|_{x_N=1}, \] where we set \(x_N = 1\) in the integrand. The integral only exists if the graph \(G\) and the value of \(D\) fulfill certain restrictions. Feynman periods are interesting transcendental numbers that are difficult to compute in general. To tropicalize, the author replaces the Kirchhof polynomial with the following piece-wise monomial function: \[ \Psi_G^{\mathrm{tr}} = \max_{T\subset G} \prod_{e\not \in T} x_e, \] where, instead of summing over all monomials, we take the one of maximal value. He then defines the Hepp bound, \(\mathcal H(G)\), by \[ \mathcal{H}(G) = \int_{\mathbb R_{> 0} ^{N-1}} \left. \frac{d x_1 \cdots d x_{N-1}}{\left(\Psi^{\mathrm{tr}}_{G}\right)^{D/2}} \right|_{x_N=1}. \]

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T18 Feynman diagrams
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
14T90 Applications of tropical geometry
05B35 Combinatorial aspects of matroids and geometric lattices
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
51M20 Polyhedra and polytopes; regular figures, division of spaces

Software:

Reduze; lrs; SecDec; VolEsti

References:

[1] N. Anari, S. Oveis Gharan, and C. Vinzant, Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids. In 59th Annual IEEE Symposium on Foundations of Computer Science -FOCS 2018, pp. 35-46, IEEE Computer Soc., Los Alamitos, CA, 2018 Zbl 07442560 MR 3899575
[2] F. Ardila, C. Benedetti and J. Doker, Matroid polytopes and their volumes. Discrete Com-put. Geom. 43 (2010), no. 4, 841-854 Zbl 1204.52016 MR 2610473 · Zbl 1204.52016
[3] N. Arkani-Hamed, Y. Bai and T. Lam, Positive geometries and canonical forms. J. High Energy Phys. 2017, no. 11, article id. 039 Zbl 1383.81273 MR 3747267 · Zbl 1383.81273
[4] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. Postnikov, and J. Trnka, On-shell struc-tures of MHV amplitudes beyond the planar limit. J. High Energy Phys. (2015), no. 6, article id. 179 Zbl 1388.81272 MR 3370156 · Zbl 1388.81272
[5] N. Arkani-Hamed, S. He and T. Lam, Stringy canonical forms. J. High Energy Phys. 2021, no. 2, article id. 069 Zbl 1460.83083 MR 4260349 · Zbl 1460.83083
[6] D. Avis, A revised implementation of the reverse search vertex enumeration algorithm. In Polytopes -Combinatorics and Computation pp. 177-198. DMV Seminar 29, Birkhäuser, Basel, 2000 Zbl 0960.68171 MR 1785290 · Zbl 0960.68171
[7] C. Bergbauer, R. Brunetti and D. Kreimer, Renormalization and resolution of singularit-ies. 2009, arXiv:0908.0633
[8] M. C. Bergère, C. de Calan, and A. P. C. Malbouisson, A theorem on asymptotic expan-sion of Feynman amplitudes. Comm. Math. Phys. 62 (1978), no. 2, 137-158 MR 505709
[9] M. Berghoff, Wonderful compactifications in quantum field theory. Commun. Number Theory Phys. 9 (2015), no. 3, 477-547 Zbl 1376.81052 MR 3399925 · Zbl 1376.81052
[10] S. Bloch, H. Esnault, and D. Kreimer, On motives associated to graph polynomials. · Zbl 1109.81059
[11] Comm. Math. Phys. 267 (2006), no. 1, 181-225 Zbl 1109.81059 MR 2238909
[12] S. Bloch and D. Kreimer, Mixed Hodge structures and renormalization in physics. Com-mun. Number Theory Phys. 2 (2008), no. 4, 637-718 Zbl 1214.81095 MR 2492196 · Zbl 1214.81095
[13] C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals. Comput. Phys. Comm. 178 (2008), no. 8, 596-610 Zbl 1196.81010 MR 2672132 · Zbl 1196.81010
[14] C. Bogner and S. Weinzierl, Feynman graph polynomials. Internat. J. Modern Phys.A 25 (2010), no. 13, 2585-2618 Zbl 1193.81072 MR 2651267 · Zbl 1193.81072
[15] J. E. Bonin and A. de Mier, The lattice of cyclic flats of a matroid. Ann. Comb. 12 (2008), no. 2, 155-170 Zbl 1145.05015 MR 2428902 · Zbl 1145.05015
[16] J. E. Bonin and J. P. S. Kung, The G -invariant and catenary data of a matroid. Adv. in Appl. Math. 94 (2018), 39-70 Zbl 1378.05020 MR 3739496 · Zbl 1378.05020
[17] M. Borinsky, Graphs in perturbation theory. Algebraic structure and asymptotics. Springer Theses, Springer, Cham, 2018 Zbl 1444.81002 MR 3839650
[18] A. V. Borovik, I. M. Gelfand, A. Vince, and N. White The lattice of flats and its underly-ing flag matroid polytope. Ann. Comb. 1 (1997), no. 1, 17-26 Zbl 0929.05014 MR 1474798 · Zbl 0929.05014
[19] M. Borowiecki, J. W. Kennedy, and M. M. Sysło (eds.), On hamiltonian matroids. In Graph theory (Łagów, 1981), pp. 23-27, Lecture Notes in Math., 1018, Springer, Berlin, 1983 Zbl 0524.05023 MR 0730628 · Zbl 0524.05023
[20] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop. Comput. Phys. · Zbl 1360.81013
[21] Comm. 196 (2015), 470-491 Zbl 1360.81013
[22] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of the tree-level scattering amplitude recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94 (2005), no. 18, article id. 181602 MR 2260976
[23] D. J. Broadhurst, Evaluation of a class of Feynman diagrams for all numbers of loops and dimensions. Phys. Lett. B 164 (1985), no. 4-6, 356-360
[24] D. J. Broadhurst, Massless scalar Feynman diagrams: five loops and beyond. Tech. Rep. OUT-4102-18, Open University, Milton Keynes, Dec., 1985, arXiv:1604.08027
[25] D. J. Broadhurst and D. Kreimer, Knots and numbers in 4 theory to 7 loops and beyond. Internat. J. Modern Phys. C 6 (1995), no. 4, 519-524 Zbl 0940.81520 MR 1352337 · Zbl 0940.81520
[26] F. C. S. Brown, On the periods of some Feynman integrals. 2009, arXiv:0910.0114
[27] F. C. S. Brown, Feynman amplitudes, coaction principle, and cosmic Galois group. Com-mun. Number Theory Phys. 11 (2017), no. 3, 453-556. Based on lectures given at the IHÉS in May 2015 YouTube PlJIECqRZRA, BLloW3zzTrc, UyjOrKwk3GY, Tco0PP4wvxg Zbl 1395.81117 MR 3713351 · Zbl 1395.81117
[28] F. C. S. Brown and D. Kreimer, Angles, scales and parametric renormalization. Lett. Math. Phys. 103 (2013), no. 9, 933-1007 Zbl 1273.81164 MR 3077961 · Zbl 1273.81164
[29] F. C. S. Brown and O. Schnetz, A K3 in 4 . Duke Math. J. 161 (2012), no. 10, 1817-1862 Zbl 1253.14024 MR 954618 · Zbl 1253.14024
[30] F. C. S. Brown and O. Schnetz, Modular forms in quantum field theory. Commun. Num-ber Theory Phys. 7 (2013), no. 2, 293-325 Zbl 1290.81083 MR 3164866 · Zbl 1290.81083
[31] F. C. S. Brown and O. Schnetz, Single-valued multiple polylogarithms and a proof of the zig-zag conjecture. J. Number Theory 148 (2015), 478-506 Zbl 1395.11115 MR 3283191 · Zbl 1395.11115
[32] F. C. S. Brown and K. A. Yeats, Spanning forest polynomials and the transcendental weight of Feynman graphs. Comm. Math. Phys. 301 (2011), no. 2, 357-382 Zbl 1223.05019 MR 2764991 · Zbl 1223.05019
[33] T. H. Brylawski, A combinatorial model for series-parallel networks. Trans. Amer. Math. Soc. 154 (1971), 1-22 Zbl 0215.33702 MR 288039 · Zbl 0215.33702
[34] T. H. Brylawski, An affine representation for transversal geometries. Studies in Appl. Math. 54 (1975), no. 2, 143-160 Zbl 0309.05018 MR 0462992 · Zbl 0309.05018
[35] F. Chapoton, F. Hivert, J.-C. Novelli, and J.-Y. Thibon, An operational calculus for the mould operad. Int. Math. Res. Not. IMRN (2008), no. 9, article id rnn018 Zbl 1146.18301 MR 2429249 · Zbl 1146.18301
[36] K. G. Chetyrkin and F. V. Tkachov, Integration by parts: The algorithm to calculateˇ-functions in 4 loops. Nucl. Phys. B 192 (1981), 159-204
[37] S. Chopra, On the spanning tree polyhedron. Oper. Res. Lett. 8 (1989), no. 1, 25-29 Zbl 0675.90060 MR 983570 · Zbl 0675.90060
[38] J. C. Collins, Renormalization. Camb. Monogr. Math. Phys., Cambridge University Press, Cambridge, 1984 Zbl 1094.53505 MR 778558
[39] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210 (2000), no. 1, 249-273 Zbl 1032.81026 MR 1748177 · Zbl 1032.81026
[40] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem II: Theˇ-function, diffeomorphisms and the renormalization group. · Zbl 1042.81059
[41] Comm. Math. Phys. 216 (2001), no. 1, 215-241 Zbl 1042.81059 MR 1810779
[42] B. Cousins and S. Vempala, A practical volume algorithm. Math. Program. Comput. 8 (2016), no. 2, 133-160 Zbl 1341.65007 MR 3503293 · Zbl 1341.65007
[43] H. H. Crapo, A higher invariant for matroids. J. Combinatorial Theory 2 (1967), 406-417 Zbl 0168.26203 MR 215744 · Zbl 0168.26203
[44] H. Crapo and W. Schmitt, A free subalgebra of the algebra of matroids. European J. Com-bin. 26 (2005), no. 7, 1066-1085 Zbl 1071.05025 MR 2155892 · Zbl 1071.05025
[45] H. H. Crapo, The Tutte polynomial. Aequationes Math. 3 (1969), 211-229 Zbl 0197.50202 MR 0262095 · Zbl 0197.50202
[46] J. Cresson, Calcul moulien. Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), no. 2, 307-395 Zbl 1341.37028 MR 2562831 · Zbl 1341.37028
[47] I. Crump, Graph invariants with connections to the Feynman period in 4 theory. Ph.D. thesis, Simon Fraser University, Burnaby, 2017
[48] I. Crump, Properties of the extended graph permanent. Commun. Number Theory Phys. 11 (2017), no. 4, 791-836 Zbl 1387.05146 MR 3733766 · Zbl 1387.05146
[49] I. Crump, M. DeVos, and K. Yeats, Period preserving properties of an invariant from the permanent of signed incidence matrices. Ann. Inst. Henri Poincaré D 3 (2016), no. 4, 429-454 Zbl 1355.05117 MR 3593557 · Zbl 1355.05117
[50] W. H. Cunningham, On matroid connectivity. J. Combin. Theory Ser. B 30 (1981), no. 1, 94-99 Zbl 0463.05032 MR 609600 · Zbl 0463.05032
[51] W. H. Cunningham and J. Edmonds, A combinatorial decomposition theory. Canadian J. Math. 32 (1980), no. 3, 734-765 Zbl 0442.05054 MR 586989 · Zbl 0442.05054
[52] C. de Calan and V. Rivasseau, Local existence of the Borel transform in Euclideanˆ4 4 . Comm. Math. Phys. 82 (1981), no. 1, 69-100 MR 638514
[53] J. A. De Loera, D. C. Haws and M. Köppe, Ehrhart polynomials of matroid polytopes and polymatroids. Discrete Comput. Geom. 42 (2009), no. 4, 670-702 Zbl 1207.52015 MR 2556462 · Zbl 1207.52015
[54] V. Del Duca, L. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level. Nuclear Phys. B 571 (2000), 51-70
[55] G. Denham, M. Schulze, and U. Walther, Matroid connectivity and singularities of con-figuration hypersurfaces. Lett. Math. Phys. 111 (2021), no. 1, article id. 11 Zbl 07305729 MR 4205801 · Zbl 1509.81478
[56] H. Derksen, Symmetric and quasi-symmetric functions associated to polymatroids. · Zbl 1231.05276
[57] J. Algebraic Combin. 30 (2009), no. 1, 43-86 Zbl 1231.05276 MR 2519849
[58] H. Derksen and A. Fink, Valuative invariants for polymatroids. Adv. Math. 225 (2010), no. 4, 1840-1892 Zbl 1221.05031 MR 2680193 · Zbl 1221.05031
[59] D. Doryn, The c 2 invariant is invariant. Adv. Theor. Math. Phys. 21 (2017), no. 8, 1953-1989 MR 3783837 · Zbl 1384.81080
[60] D. Doryn, Dual graph polynomials and a 4-face formula. Adv. Theor. Math. Phys. 22 (2018), no. 2, 395-427 Zbl 1398.81099 MR 3870264 · Zbl 1398.81099
[61] J. M. Drummond, J. Henn, V. A. Smirnov and E. Sokatchev, Magic identities for con-formal four-point integrals. J. High Energy Phys. 2007, no. 1, article id. 064 Zbl 1430.22028 MR 2285943
[62] F. J. Dyson, The S matrix in quantum electrodynamics. Phys. Rev. (2) 75 (1949), 1736-1755 Zbl 0033.14201 MR 0031388 · Zbl 0033.14201
[63] J. Edmonds, Matroids and the greedy algorithm. Math. Programming 1 (1971), 127-136 Zbl 0253.90027 MR 0297357 · Zbl 0253.90027
[64] I. Z. Emiris and V. Fisikopoulos, Practical polytope volume approximation. ACM Trans. Math. Software 44 (2018), no. 4, article id. 38 Zbl 1484.65042 MR 3865826 · Zbl 1484.65042
[65] E. M. Feichtner and B. Sturmfels, Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62 (2005), no. 4, 437-468 Zbl 1092.52006 MR 2191630 · Zbl 1092.52006
[66] E. Panzer 116
[67] P. Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University Press, Cam-bridge, 2009 Zbl 1165.05001 MR 2483235 · Zbl 1165.05001
[68] S. Fujishige, A characterization of faces of the base polyhedron associated with a sub-modular system. J. Oper. Res. Soc. Japan 27 (1984), no. 2, 112-129 Zbl 0543.52008 MR 755473 · Zbl 0543.52008
[69] K. Fukuda, cddr+ (C++ implementation of the double description method, dual Fourier-Motzkin), v. 0.77a, 2007 httpsW//www.inf.ethz.ch/personal/fukudak/cdd_home/
[70] C. Ge and F. Ma, A fast and practical method to estimate volumes of convex polytopes In Frontiers in algorithmics. 9th international workshop. FAW 2015 (Guilin, July 3-5, 2015), pp. 52-65. Springer, Cham, 2015 Zbl 1407.68509
[71] M. Golz, E. Panzer and O. Schnetz, Graphical functions in parametric space. Lett. Math. Phys. 107 (2017), no. 6, 1177-1192 Zbl 1370.81132 MR 3647085 · Zbl 1370.81132
[72] A. G. Grozin, Integration by parts: an introduction. Internat. J. Modern Phys. A 26 (2011), no. 17, 2807-2854 Zbl 1247.81138 MR 2818186 · Zbl 1247.81138
[73] S. Hampe, The intersection ring of matroids. J. Combin. Theory Ser. B 122 (2017), 578-614 Zbl 1350.05014 MR 3575220 · Zbl 1350.05014
[74] M. Henk, J. Richter-Gebert, and G. M. Ziegler, Basic properties of convex polytopes. In Handbook of discrete and computational geometry, pp. 243-270, CRC Press Ser. Dis-crete Math. Appl., CRC, Boca Raton, FL, 1997 Zbl 0911.52007 MR 1730169
[75] K. Hepp, Proof of the Bogoliubov-Parasiuk theorem on renormalization. Comm. Math. Phys. 2 (1966), no. 1 301-326 Zbl 1222.81219 · Zbl 1222.81219
[76] S. Hu, O. Schnetz, J. Shaw and K. Yeats, Further investigations into the graph theory of 4 -periods and the c 2 invariant. Ann. Inst. Henri Poincaré D 9 (2022), 473-524 · Zbl 1520.81075
[77] D. M. Jackson, A. Kempf and A. H. Morales, A robust generalization of the Legendre transform for QFT. J. Phys. A 50 (2017), no. 22, article id. 225201 Zbl 1367.81116 MR 3659109 · Zbl 1367.81116
[78] T. Kaneko and T. Ueda, A geometric method of sector decomposition. Comput. Phys. Commun. 181 (2010), 1352-1361 Zbl 1219.65014 · Zbl 1219.65014
[79] D. I. Kazakov, The method of uniqueness, a new powerful technique for multiloop cal-culations. Phys. Lett. B 133 (1983), 406-410
[80] D. I. Kazakov, Analytical methods for multiloop calculations. In Russian. Joint Inst. Nuc-lear Res., Dubna, 1984, E2-84-410 MR 756996
[81] D. I. Kazakov, Calculation of Feynman integrals by the method of “Uniqueness”. Teoret. Mat. Fiz. 58 (1984), no. 3, 343-353 MR 0752072
[82] G. Kirchhoff, Ueber die Auflösung der Gleichungen, auf welche man bei der Unter-suchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik und Chemie 72 (1847), no. 12, 497-508
[83] H. Kleinert and V. Schulte-Frohlinde, Critical properties of 4 -theories. World Scientific Publishing Co., Inc., River Edge, N.J., 2001 Zbl 1033.81007 MR 1868655
[84] R. Kleiss and H. Kuijf, Multigluon cross sections and 5-jet production at hadron colliders. Nuclear Phys. B 312 (1989), no. 3, 616-644
[85] Hepp’s bound for Feynman graphs and matroids 117
[86] M. V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of O.n/-symmetric 4 theory and critical exponents. Phys. Rev. D 96 (2017), no. 3, article id. 036016 MR 3848159
[87] M. Kontsevich and D. Zagier, Periods. In Mathematics unlimited -2001 and beyond, pp. 771-808, Springer, Berlin, 2001 Zbl 1039.11002 MR 1852188 · Zbl 0955.00011
[88] D. Kreimer and K. Yeats, Tensor structure from scalar Feynman matroids. Phys. Lett. B 698 (2011), no. 5, 443-450 MR 2787531
[89] J. B. Kruskal, Jr., On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7 (1956), 48-50 Zbl 0070.18404 MR 78686 · Zbl 0070.18404
[90] J. B. Lasserre, Level sets and nongaussian integrals of positively homogeneous functions. Int. Game Theory Rev. 17 (2015), no. 1, article id. 1540001 · Zbl 1342.90133
[91] C. R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in super-space and components. Zbl 1388.81581 · Zbl 1388.81581
[92] B. D. McKay, Spanning trees in regular graphs. European J. Combin. 4 (1983), no. 2, 149-160 Zbl 0517.05043 MR 705968 · Zbl 0517.05043
[93] T. Nagaoka and A. Yazawa, Strict log-concavity of the Kirchhoff polynomial and its applications to the strong Lefschetz property. J. Algebra 577 (2021), 175-202 Zbl 1460.05091 MR 4234203 · Zbl 1460.05091
[94] N. Nakanishi, Graph theory and Feynman integrals. Mathematics and its applications 11. Gordon and Breach, New York etc., 1971 Zbl 0212.29203
[95] J. Oxley, Matroid theory. Second edn., Oxf. Grad. Texts Math. 21, Oxford University Press, Oxford, 2011 Zbl 1254.05002 MR 2849819 · Zbl 1254.05002
[96] E. Panzer, Feynman integrals and hyperlogarithms. Ph.D. thesis. Humboldt-Universität, Berlin, 2014
[97] E. Panzer and O. Schnetz, The Galois coaction on 4 periods. Commun. Number Theory Phys. 11 (2017), no. 3, 657-705 Zbl 1439.81046 MR 3713353 · Zbl 1439.81046
[98] E. Patterson, On the singular structure of graph hypersurfaces. Commun. Number Theory Phys. 4 (2010), no.-4, 659-708 Zbl 1244.14035 MR 2793424 · Zbl 1244.14035
[99] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory. Addison-Wesley, Advanced Book Program, Reading, MA, 1995 MR 1402248
[100] A. Postnikov, Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN 2009, no. 6, 1026-1106 Zbl 1162.52007 MR 2487491
[101] V. Rivasseau and Z. Wang, How to resum Feynman graphs. Ann. Henri Poincaré 15 (2014), no. 11, 2069-2083 Zbl 1302.81128 MR 3268824 · Zbl 1302.81128
[102] D. Sachs, Graphs, matroids, and geometric lattices. J. Combinatorial Theory 9 (1970), 192-199 Zbl 0201.26002 MR 262106 · Zbl 0201.26002
[103] J. Schlenk and T. Zirke, Calculation of multi-loop integrals with SecDec-3.0. PoS, RADCOR2015, article id. 106 httpsW//pos.sissa.it/235/106/pdf
[104] W. R. Schmitt, Incidence Hopf algebras. J. Pure Appl. Algebra 96 (1994), no. 3, 299-330 Zbl 0808.05101 MR 1303288 · Zbl 0808.05101
[105] O. Schnetz, Quantum periods: a census of 4 -transcendentals. Commun. Number Theory Phys. 4 (2010), no. 1, 1-47 Zbl 1202.81160 MR 2679376 · Zbl 1202.81160
[106] O. Schnetz, Quantum field theory over F q . Electron. J. Combin. 18 (2011), no. 1, article id. 102 Zbl 1217.05110 MR 2811071
[107] O. Schnetz, Graphical functions and single-valued multiple polylogarithms. Commun. Number Theory Phys. 8 (2014), no. 4, 589-675 Zbl 1320.81075 MR 3318386 · Zbl 1320.81075
[108] O. Schnetz, Numbers and functions in quantum field theory. Phys. Rev. D 97 (2018), no. 8, article id. 085018 MR 3846506
[109] K. Schultka, Toric geometry and regularization of Feynman integrals. 2018, arXiv:1806.01086
[110] P. D. Seymour, Decomposition of regular matroids. J. Combin. Theory Ser. B 28 (1980), no. 3, 305-359 Zbl 0443.05027 MR 579077 · Zbl 0443.05027
[111] A. V. Smirnov and V. A. Smirnov, Hepp and Speer sectors within modern strategies of sector decomposition. J. High Energy Phys. 2009, article id. 004
[112] E. R. Speer, Generalized Feynman amplitudes. Ann. Math. Stud. 62, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1969 Zbl 0172.27301 MR 0241077 · Zbl 0172.27301
[113] E. R. Speer, Ultraviolet and infrared singularity structure of generic Feynman amplitudes.
[114] D. E. Speyer, A matroid invariant via the K-theory of the Grassmannian. Adv. Math. 221 (2009), no. 3, 882-913 Zbl 1222.14131 MR 2511042 · Zbl 1222.14131
[115] I. Todorov, Relativistic causality and position space renormalization. Nuclear Phys. B 912 (2016), 79-87 Zbl 1349.81009 MR 3567575 · Zbl 1349.81009
[116] K. Truemper, On Whitney’s 2-isomorphism theorem for graphs. J. Graph Theory 4 (1980), no. 1, 43-49 Zbl 0397.05043 MR 0558452 · Zbl 0397.05043
[117] M. Tsuchiya, On determination of graph G whose bond lattice L.G/ is modular. Discrete Math. 56 (1985), no. 1, 79-81 Zbl 0592.05057 MR 808089 · Zbl 0592.05057
[118] M. Tsuchiya, On bond lattices of graphs. Chinese J. Math. 20 (1992), no. 3, 287-299 Zbl 0773.05037 MR 1183824 · Zbl 0773.05037
[119] W. T. Tutte, Lectures on matroids. J. Res. Nat. Bur. Standards Sect. B 69B (1965), 1-47 Zbl 0151.33801 MR 179781 · Zbl 0151.33801
[120] W. T. Tutte, Connectivity in matroids. Canadian J. Math. 18 (1966), 1301-1324 Zbl 0149.21501 MR 205880 · Zbl 0149.21501
[121] A. Umer Ashraf, Another approach to volume of matroid polytopes. 2018, arXiv:1812.09373
[122] A. von Manteuffel and C. Studerus, Reduze 2 -distributed Feynman integral reduction. 2012, arXiv:1201.4330
[123] S. Weinberg, High-energy behavior in quantum field-theory. Phys. Rev. (2) 118 (1960), 838-849 Zbl 0098.20403 MR 116953 · Zbl 0098.20403
[124] H. Whitney, Non-separable and planar graphs. Trans. Amer. Math. Soc. 34 (1932), no. 2, 339-362 JFM 58.0608.01 Zbl 0004.13103 MR 1501641 · JFM 58.0608.01
[125] H. Whitney, 2-Isomorphic graphs. Amer. J. Math. 55 (1933), no. 1-4, 245-254 JFM 59.1235.01 Zbl 0006.37005 MR 1506961 · JFM 59.1235.01
[126] K. Yeats, A special case of completion invariance for the c 2 invariant of a graph. Canad. J. Math. 70 (2018), no. 6, 1416-1435. Zbl 1411.05133 MR 3850549 · Zbl 1411.05133
[127] G. M. Ziegler, Lectures on 0=1-polytopes. In Polytopes -combinatorics and computation (Oberwolfach, 1997), pp. 1-41, DMV Sem. 29, Birkhäuser, Basel, 2000 · Zbl 0966.52012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.