×

Sasa-Satsuma type matrix integrable hierarchies and their Riemann-Hilbert problems and soliton solutions. (English) Zbl 1512.37081

Summary: Sasa-Satsuma type matrix integrable hierarchies are generated from taking two group reductions of replacing the spectral parameter with its complex conjugate and its negative in the matrix AKNS spectral problems. Based on the Lax pairs and the adjoint lax pairs, Riemann-Hilbert problems and thus inverse scattering transforms are formulated for the resulting Sasa-Satsuma type matrix integrable hierarchies, and their soliton solutions are generated from the associated reflectionless Riemann-Hilbert problems.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35Q15 Riemann-Hilbert problems in context of PDEs
35Q51 Soliton equations
Full Text: DOI

References:

[1] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[2] Calogero, F.; Degasperis, A., Solitons and Spectral Transform I (1982), North-Holland: North-Holland Amsterdam · Zbl 0501.35072
[3] Matveev, V. B.; Salle, M. A., Darboux Transformations and Solitons (1991), Springer: Springer Berlin, Heidelberg · Zbl 0744.35045
[4] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press: Cambridge University Press New York · Zbl 1099.35111
[5] Ma, W. X., \(N\)-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, Math. Comput. Simulation, 190, 270-279 (2021) · Zbl 1540.35103
[6] Ma, W. X.; Yong, X. L.; Lü, X., Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations, Wave Motion, 103, Article 102719 pp. (2021) · Zbl 1524.35508
[7] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E., Theory of Solitons: The Inverse Scattering Method (1984), Consultants Bureau: Consultants Bureau New York · Zbl 0598.35002
[8] Ma, W. X., Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction, Math. Methods Appl. Sci., 42, 1099-1113 (2019) · Zbl 1503.35121
[9] Ma, W. X., Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems, Partial Differ. Equ. Appl. Math., 4, Article 100190 pp. (2021)
[10] Ma, W. X., Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies, Physica D, 430, Article 133078 pp. (2022) · Zbl 1487.35270
[11] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068
[12] Manakov, S. V., On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys.—JETP, 38, 248-253 (1974)
[13] Tu, G. Z., On Liouville integrability of zero-curvature equations and the Yang hierarchy, J. Phys. A: Math. Gen., 22, 2375-2392 (1989) · Zbl 0697.58025
[14] Sasa, N.; Satsuma, J., New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japan, 60, 409-417 (1991) · Zbl 0920.35128
[15] Ohta, Y., Dark soliton solution to Sasa-Satsuma equation, (Ma, W. X.; Hu, X. B.; Liu, Q. P., Nonlinear and Modern Mathematucal Physics (2010), AIP: AIP New York), 114-121 · Zbl 1214.81083
[16] Geng, X. G.; Chen, M. M.; Wang, K. D., Application of the nonlinear steepest descent method to the coupled Sasa-Satsuma equation, East Asian J. Appl. Math., 11, 181-206 (2020) · Zbl 1467.35281
[17] Wang, X. B.; Han, B., The nonlinear steepest descent approach for long time behavior of the two-component coupled Sasa-Satsuma equation with a \(5 \times 5\) Lax pair, Taiwanese J. Math., 25, 381-407 (2020) · Zbl 1479.35729
[18] Xu, S. Q.; Li, R. M.; Geng, X. G., Riemann-Hilbert method for the three-component Sasa-Satsuma equation and its \(N\)-soliton solutions, Rep. Math. Phys., 85, 77-103 (2020) · Zbl 1527.35396
[19] Ma, W. X.; Yong, X. L.; Qin, Z. Y.; Gu, X.; Zhou, Y., A generalized Liouville’s formula, Appl. Math. J. Chinese Univ., 37, 470-474 (2022) · Zbl 1513.35472
[20] Hildebrand, F. B., Methods of Applied Mathematics (1992), Dover: Dover Mineola, New York · Zbl 0805.70001
[21] Ablowitz, M. J.; Prinari, B.; Trubatch, A. D., Discrete and Continuous Nonlinear Schrödinger Systems (2004), Cambridge University Press: Cambridge University Press New York · Zbl 1057.35058
[22] Gakhov, F. D., Boundary Value Problems (2014), Elsevier Science: Elsevier Science London · Zbl 0141.08001
[23] Kawata, T., Riemann spectral method for the nonlinear evolution equation, (Debnath, L., Advances in Nonlinear Waves I (1984), Pitman: Pitman Boston), 210-225 · Zbl 0551.35079
[24] Ma, W. X., Inverse scattering and soliton solutions for nonlocal reverse-spacetime nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 149, 251-263 (2021) · Zbl 1477.37078
[25] Wu, J. P., Spectral and soliton structures of the Sasa-Satsuma higher-order nonlinear Schrödinger equation, Anal. Math. Phys., 11, 97 (2021) · Zbl 1471.35263
[26] Ma, W. X., Binary Darboux transformation for general matrix mKdV equations and reduced counterparts, Chaos Solitons Fractals, 146, Article 110824 pp. (2021) · Zbl 1498.35481
[27] Ma, W. X.; Huang, Y. H.; Wang, F. D., Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies, Stud. Appl. Math., 145, 563-585 (2020) · Zbl 1454.35348
[28] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110, Article 064105 pp. (2013)
[29] Gürses, M.; Pekcan, A., Nonlocal nonlinear Schrödinger equations and their soliton solutions, J. Math. Phys., 59, Article 051501 pp. (2018) · Zbl 1392.35285
[30] Fokas, A. S., Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29, 319-324 (2016) · Zbl 1339.37066
[31] Song, C. Q.; Xiao, D. M.; Zhu, Z. N., Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 45, 13-28 (2017) · Zbl 1485.35346
[32] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems (2010), SIAM: SIAM Philadelphia · Zbl 1234.35006
[33] Wang, D. S.; Zhang, D. J.; Yang, J., Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys., 51, Article 023510 pp. (2010) · Zbl 1309.35145
[34] Geng, X. G.; Wu, J. P., Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion, 60, 62-72 (2016) · Zbl 1467.35282
[35] Fokas, A. S.; Lenells, J., The unified method: I. Nonlinearizable problems on the half-line, J. Phys. A, 45, Article 195201 pp. (2012) · Zbl 1256.35044
[36] Fokas, A. S.; Lenells, J., The unified method: III. Nonlinearizable problems on the interval, J. Phys. A, 45, Article 195203 pp. (2012) · Zbl 1256.35046
[37] Ma, W. X., Generalized bilinear differential equations, Stud. Nonlinear Sci., 2, 140-144 (2011)
[38] Freeman, N. C.; Nimmo, J. J.C., Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique, Phys. Lett. A, 95, 1-3 (1983) · Zbl 0588.35077
[39] Ma, W. X.; You, Y., Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc., 357, 1753-1778 (2005) · Zbl 1062.37077
[40] Ma, W. X.; Zhang, Y. J., Darboux transformations of integrable couplings and applications, Rev. Math. Phys., 30, Article 1850003 pp. (2018) · Zbl 1383.35194
[41] Matveev, V. B., Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys. Lett. A, 166, 205-208 (1992)
[42] Ma, W. X., Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301, 35-44 (2002) · Zbl 0997.35066
[43] Ma, W. X.; Zhou, Y., Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differential Equations, 264, 2633-2659 (2018) · Zbl 1387.35532
[44] Yu, J. P.; Ma, W. X.; Ren, B.; Sun, Y. L.; Khalique, C. M., Diversity of interaction solutions of a shallow water wave equation, Complexity, 2019, Article 5874904 pp. (2019) · Zbl 1432.35180
[45] Feng, B. F.; Ling, L. M.; Takahashi, D. A., Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud. Appl. Math., 144, 46-101 (2020) · Zbl 1454.35338
[46] Sun, Y. F.; Ha, J. T.; Zhang, H. Q., Lump solution and lump-type solution to a class of mathematical physics equation, Modern Phys. Lett. B, 34, Article 2050096 pp. (2020)
[47] Lü, X.; Chen, S. J.; Liu, G. Z.; Ma, W. X., Study on lump behavior for a new (3+1)-dimensional generalised Kadomtsev-Petviashvili equation, East Asian J. Appl. Math., 11, 594-603 (2021) · Zbl 1479.35031
[48] Ma, W. X.; Bai, Y. S.; Adjiri, A., Nonlinearity-managed lump waves in a spatial symmetric HSI model, Eur. Phys. J. Plus, 136, 240 (2021)
[49] Ma, W. X., A polynomial conjecture connected with rogue waves in the KdV equation, Partial Differ. Equ. Appl. Math., 3, Article 100023 pp. (2021)
[50] Rao, J. G.; Chow, K. W.; Mihalache, D.; He, J. S., Completely resonant collision of lumps and line solitons in the Kadomtsev-Petviashvili I equation, Stud. Appl. Math., 147, 1007-1035 (2021) · Zbl 1476.35081
[51] Rao, J. G.; He, J. S.; Malomed, B. A., Resonant collisions between lumps and periodic solitons in the Kadomtsev-Petviashvili I equation, J. Math. Phys., 63, Article 013510 pp. (2022) · Zbl 1507.35226
[52] Ma, W. X., Long-time asymptotics of a three-component coupled mKdV system, Mathematics, 7, 573 (2009)
[53] Rybalko, Y.; Shepelsky, D., Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation, J. Math. Phys., 60, Article 031504 pp. (2019) · Zbl 1436.35293
[54] Ma, W. X., Long-time asymptotics of a three-component coupled nonlinear Schrödinger system, J. Geom. Phys., 153, Article 103669 pp. (2020) · Zbl 1440.35308
[55] Belokolos, E. D.; Bobenko, A. I.; Enol’skii, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations (1994), Springer: Springer Berlin · Zbl 0809.35001
[56] Geng, X. G.; Li, R. M.; Xue, B., A vector Geng-Li model: new nonlinear phenomena and breathers on periodic background waves, Physica D, 434, Article 133270 pp. (2022) · Zbl 1490.35093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.