×

Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures. (English) Zbl 1445.35119

Summary: We propose new and original mathematical connections between Hamilton-Jacobi (HJ) partial differential equations (PDEs) with initial data and neural network architectures. Specifically, we prove that some classes of neural networks correspond to representation formulas of HJ PDE solutions whose Hamiltonians and initial data are obtained from the parameters of the neural networks. These results do not rely on universal approximation properties of neural networks; rather, our results show that some classes of neural network architectures naturally encode the physics contained in some HJ PDEs. Our results naturally yield efficient neural network-based methods for evaluating solutions of some HJ PDEs in high dimension without using grids or numerical approximations. We also present some numerical results for solving some inverse problems involving HJ PDEs using our proposed architectures.

MSC:

35F21 Hamilton-Jacobi equations
35F25 Initial value problems for nonlinear first-order PDEs
92C20 Neural biology
35R30 Inverse problems for PDEs

Software:

FPINNs; PDE-Net; DGM; Adam; PPINN

References:

[1] Aaibid, M.; Sayah, A., A direct proof of the equivalence between the entropy solutions of conservation laws and viscosity solutions of Hamilton-Jacobi equations in one-space variable, JIPAM J. Inequal. Pure Appl. Math., 7, 2, 11 (2006) · Zbl 1133.35330
[2] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. Handbook of Linear Algebra 39, (2006)
[3] Akian, M.; Gaubert, S.; Lakhoua, A., The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis, SIAM J. Control Optim., 47, 2, 817-848 (2008) · Zbl 1157.49034
[4] Alla, A.; Falcone, M.; Saluzzi, L., An efficient DP algorithm on a tree-structure for finite horizon optimal control problems, SIAM J. Sci. Comput., 41, 4, A2384-A2406 (2019) · Zbl 1423.49024
[5] Alla, A.; Falcone, M.; Volkwein, S., Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach, SIAM J. Control Optim., 55, 5, 3091-3115 (2017) · Zbl 1378.49025
[6] Arnol’d, V.I.: Mathematical methods of classical mechanics. Graduate Texts in Mathematics, vol. 60. Springer, New York (1989). Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition
[7] Bachouch, A., Huré, C., Langrené, N., Pham, H.: Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications. arXiv preprint arXiv:1812.05916 (2018)
[8] Banerjee, K.; Georganas, E.; Kalamkar, D.; Ziv, B.; Segal, E.; Anderson, C.; Heinecke, A., Optimizing deep learning RNN topologies on intel architecture, Supercomput. Front. Innov., 6, 3, 64-85 (2019)
[9] Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Syst. Control Found. Appl. Birkhäuser Boston, Inc., Boston, MA (1997). 10.1007/978-0-8176-4755-1. With appendices by Maurizio Falcone and Pierpaolo Soravia · Zbl 0890.49011
[10] Bardi, M.; Evans, L., On Hopf’s formulas for solutions of Hamilton-Jacobi equations, Nonlinear Anal. Theory, Methods Appl., 8, 11, 1373-1381 (1984) · Zbl 0569.35011 · doi:10.1016/0362-546X(84)90020-8
[11] Barles, G., Solutions de viscosité des équations de Hamilton-Jacobi (1994), Berlin: Springer, Berlin · Zbl 0819.35002
[12] Barles, G.; Tourin, A., Commutation properties of semigroups for first-order Hamilton-Jacobi equations and application to multi-time equations, Indiana Univ. Math. J., 50, 4, 1523-1544 (2001) · Zbl 1044.49022
[13] Barron, E.; Evans, L.; Jensen, R., Viscosity solutions of Isaacs’ equations and differential games with Lipschitz controls, J. Differ. Equ., 53, 2, 213-233 (1984) · Zbl 0548.90104 · doi:10.1016/0022-0396(84)90040-8
[14] Beck, C., Becker, S., Cheridito, P., Jentzen, A., Neufeld, A.: Deep splitting method for parabolic PDEs. (2019). arXiv preprint arXiv:1907.03452
[15] Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and Kolmogorov equations by means of deep learning. (2018). arXiv preprint arXiv:1806.00421
[16] Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29(4), 1563-1619 (2019) · Zbl 1442.91116
[17] Bellman, RE, Adaptive Control Processes: A Guided Tour (1961), Princeton: Princeton University Press, Princeton · Zbl 0103.12901
[18] Berg, J.; Nyström, K., A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing, 317, 28-41 (2018) · doi:10.1016/j.neucom.2018.06.056
[19] Bertsekas, DP, Reinforcement Learning and Optimal Control (2019), Belmont: Athena Scientific, Belmont
[20] Bokanowski, O.; Garcke, J.; Griebel, M.; Klompmaker, I., An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. Sci. Comput., 55, 3, 575-605 (2013) · Zbl 1269.65076
[21] Bonnans, JF; Shapiro, A., Perturbation Analysis of Optimization Problems (2000), New York: Springer, New York · Zbl 0966.49001
[22] Brenier, Y.; Osher, S., Approximate Riemann solvers and numerical flux functions, SIAM J. Numer. Anal., 23, 2, 259-273 (1986) · Zbl 0597.65071
[23] Brenier, Y.; Osher, S., The discrete one-sided Lipschitz condition for convex scalar conservation laws, SIAM J. Numer. Anal., 25, 1, 8-23 (1988) · Zbl 0637.65090 · doi:10.1137/0725002
[24] Buckdahn, R.; Cardaliaguet, P.; Quincampoix, M., Some recent aspects of differential game theory, Dyn. Games Appl., 1, 1, 74-114 (2011) · Zbl 1214.91013 · doi:10.1007/s13235-010-0005-0
[25] Carathéodory, C.: Calculus of variations and partial differential equations of the first order. Part I: Partial differential equations of the first order. Translated by Robert B. Dean and Julius J. Brandstatter. Holden-Day, Inc., San Francisco-London-Amsterdam (1965) · Zbl 0134.31004
[26] Carathéodory, C.: Calculus of variations and partial differential equations of the first order. Part II: Calculus of variations. Translated from the German by Robert B. Dean, Julius J. Brandstatter, translating editor. Holden-Day, Inc., San Francisco-London-Amsterdam (1967) · Zbl 0152.31602
[27] Cardin, F.; Viterbo, C., Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144, 2, 235-284 (2008) · Zbl 1153.37029 · doi:10.1215/00127094-2008-036
[28] Caselles, V., Scalar conservation laws and Hamilton-Jacobi equations in one-space variable, Nonlinear Anal. Theory Methods Appl., 18, 5, 461-469 (1992) · Zbl 0755.35067 · doi:10.1016/0362-546X(92)90013-5
[29] Chan-Wai-Nam, Q.; Mikael, J.; Warin, X., Machine learning for semi linear PDEs, J. Sci. Comput., 79, 3, 1667-1712 (2019) · Zbl 1433.68332
[30] Chen, T.; van Gelder, J.; van de Ven, B.; Amitonov, SV; de Wilde, B.; Euler, HCR; Broersma, H.; Bobbert, PA; Zwanenburg, FA; van der Wiel, WG, Classification with a disordered dopant-atom network in silicon, Nature, 577, 7790, 341-345 (2020)
[31] Cheng, T., Lewis, F.L.: Fixed-final time constrained optimal control of nonlinear systems using neural network HJB approach. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 3016-3021 (2006). 10.1109/CDC.2006.377523
[32] Corrias, L., Falcone, M., Natalini, R.: Numerical schemes for conservation laws via Hamilton-Jacobi equations. Math. Comput. 64(210), 555-580, S13-S18 (1995). 10.2307/2153439 · Zbl 0827.65085
[33] Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II. Wiley Classics Library. Wiley: New York (1989). Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication · Zbl 0729.35001
[34] Crandall, MG; Ishii, H.; Lions, PL, User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[35] Cybenko, G., Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst., 2, 4, 303-314 (1989) · Zbl 0679.94019 · doi:10.1007/BF02551274
[36] Dafermos, CM, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38, 1, 33-41 (1972) · Zbl 0233.35014 · doi:10.1016/0022-247X(72)90114-X
[37] Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, vol. 325, 4th Edn. Springer, Berlin (2016). 10.1007/978-3-662-49451-6 · Zbl 1364.35003
[38] Darbon, J., On convex finite-dimensional variational methods in imaging sciences and Hamilton-Jacobi equations, SIAM J. Imaging Sci., 8, 4, 2268-2293 (2015) · Zbl 1330.35076 · doi:10.1137/130944163
[39] Darbon, J., Meng, T.: On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations. (2019). arXiv preprint arXiv:1906.09502
[40] Darbon, J.; Osher, S., Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere, Res. Math. Sci., 3, 1, 19 (2016) · Zbl 1348.49026 · doi:10.1186/s40687-016-0068-7
[41] Dissanayake, MWMG; Phan-Thien, N., Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng., 10, 3, 195-201 (1994) · Zbl 0802.65102 · doi:10.1002/cnm.1640100303
[42] Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: An application to reachability computations. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 3034-3039 (2006). 10.1109/CDC.2006.377184
[43] Dockhorn, T.: A discussion on solving partial differential equations using neural networks. (2019). arXiv preprint arXiv:1904.07200
[44] Dolgov, S., Kalise, D., Kunisch, K.: A tensor decomposition approach for high-dimensional Hamilton-Jacobi-Bellman equations. (2019). arXiv preprint arXiv:1908.01533
[45] Dower, P.M., McEneaney, W.M., Zhang, H.: Max-plus fundamental solution semigroups for optimal control problems. In: 2015 Proceedings of the Conference on Control and its Applications, pp. 368-375. SIAM (2015) · Zbl 07875214
[46] Elliott, R.J.: Viscosity solutions and optimal control, Pitman research notes in mathematics series, vol. 165. Longman Scientific & Technical, Harlow; Wiley, New York (1987) · Zbl 0713.49035
[47] Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19, second edn. American Mathematical Society, Providence, RI (2010). 10.1090/gsm/019 · Zbl 1194.35001
[48] Evans, LC; Gariepy, RF, Measure Theory and Fine Properties of Functions (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1310.28001
[49] Evans, LC; Souganidis, PE, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33, 5, 773-797 (1984) · Zbl 1169.91317
[50] Farabet, C.; LeCun, Y.; Kavukcuoglu, K.; Culurciello, E.; Martini, B.; Akselrod, P.; Talay, S.; Bekkerman, R.; Bilenko, M.; Langford, J., Large-scale fpga-based convolutional networks, Scaling up Machine Learning: Parallel and Distributed Approaches (2011), Cambridge: Cambridge University Press, Cambridge
[51] Farabet, C., poulet, C., Han, J., LeCun, Y.: CNP: An FPGA-based processor for convolutional networks. In: International Conference on Field Programmable Logic and Applications. IEEE, Prague (2009)
[52] Farabet, C., Poulet, C., LeCun, Y.: An FPGA-based stream processor for embedded real-time vision with convolutional networks. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 878-885. IEEE Computer Society, Los Alamitos, CA, USA (2009). 10.1109/ICCVW.2009.5457611
[53] Farimani, A.B., Gomes, J., Pande, V.S.: Deep Learning the Physics of Transport Phenomena. arXiv e-prints (2017)
[54] Fleming, W.; McEneaney, W., A max-plus-based algorithm for a Hamilton-Jacobi-Bellman equation of nonlinear filtering, SIAM J. Control Optim., 38, 3, 683-710 (2000) · Zbl 0949.35039 · doi:10.1137/S0363012998332433
[55] Fleming, WH; Rishel, RW, Deterministic and stochastic optimal control, Bull. Am. Math. Soc., 82, 869-870 (1976)
[56] Fleming, WH; Soner, HM, Controlled Markov Processes and Viscosity Solutions (2006), New York: Springer, New York · Zbl 1105.60005
[57] Folland, GB, Real Analysis: Modern Techniques and Their Spplications (2013), Hoboken: Wiley, Hoboken
[58] Fujii, M.; Takahashi, A.; Takahashi, M., Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs, Asia-Pacific Financ. Mark., 26, 3, 391-408 (2019) · Zbl 1422.91694 · doi:10.1007/s10690-019-09271-7
[59] Garcke, J.; Kröner, A., Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids, J. Sci. Comput., 70, 1, 1-28 (2017) · Zbl 1434.49020
[60] Gaubert, S., McEneaney, W., Qu, Z.: Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 1054-1061. IEEE (2011)
[61] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), New York: MIT Press, New York · Zbl 1373.68009
[62] Grohs, P., Jentzen, A., Salimova, D.: Deep neural network approximations for Monte Carlo algorithms. (2019). arXiv preprint arXiv:1908.10828
[63] Grüne, L.: Overcoming the curse of dimensionality for approximating lyapunov functions with deep neural networks under a small-gain condition. (2020). arXiv preprint arXiv:2001.08423
[64] Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505-8510 (2018). 10.1073/pnas.1718942115 · Zbl 1416.35137
[65] Han, J., Zhang, L., E, W.: Solving many-electron Schrödinger equation using deep neural networks. J. Comput. Phys. 108929 (2019) · Zbl 1457.81010
[66] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778 (2016). 10.1109/CVPR.2016.90
[67] Hiriart-Urruty, JB; Lemaréchal, C., Convex Analysis and Minimization Algorithms I: Fundamentals (1993), New York: Springer, New York · Zbl 0795.49001
[68] Hiriart-Urruty, JB; Lemaréchal, C., Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods (1993), New York: Springer, New York · Zbl 0795.49002
[69] Hirjibehedin, C., Evolution of circuits for machine learning, Nature, 577, 320-321 (2020) · doi:10.1038/d41586-020-00002-x
[70] Hopf, E., Generalized solutions of non-linear equations of first order, J. Math. Mech., 14, 951-973 (1965) · Zbl 0168.35101
[71] Hornik, K., Approximation capabilities of multilayer feedforward networks, Neural Netw., 4, 2, 251-257 (1991) · doi:10.1016/0893-6080(91)90009-T
[72] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Netw., 2, 5, 359-366 (1989) · Zbl 1383.92015 · doi:10.1016/0893-6080(89)90020-8
[73] Horowitz, M.B., Damle, A., Burdick, J.W.: Linear Hamilton Jacobi Bellman equations in high dimensions. In: 53rd IEEE Conference on Decision and Control, pp. 5880-5887. IEEE (2014)
[74] Hsieh, J.T., Zhao, S., Eismann, S., Mirabella, L., Ermon, S.: Learning neural PDE solvers with convergence guarantees. In: International Conference on Learning Representations (2019)
[75] Hu, C.; Shu, C., A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 2, 666-690 (1999) · Zbl 0946.65090 · doi:10.1137/S1064827598337282
[76] Huré, C., Pham, H., Bachouch, A., Langrené, N.: Deep neural networks algorithms for stochastic control problems on finite horizon, part I: convergence analysis. (2018). arXiv preprint arXiv:1812.04300
[77] Huré, C., Pham, H., Warin, X.: Some machine learning schemes for high-dimensional nonlinear PDEs. (2019). arXiv preprint arXiv:1902.01599 · Zbl 1440.60063
[78] Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A.: A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. SN Partial Differ. Equ. Appl. 1(10), (2020) · Zbl 1455.65200
[79] Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A., von Wurstemberger, P.: Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations (2018)
[80] Hutzenthaler, M., Jentzen, A., von Wurstemberger, P.: Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks (2019)
[81] Hutzenthaler, M.; Kruse, T., Multilevel picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal., 58, 2, 929-961 (2020) · doi:10.1137/17M1157015
[82] Ishii, H., Representation of solutions of Hamilton-Jacobi equations, Nonlinear Anal. Theory, Methods Appl., 12, 2, 121-146 (1988) · Zbl 0687.35025 · doi:10.1016/0362-546X(88)90030-2
[83] Jiang, F., Chou, G., Chen, M., Tomlin, C.J.: Using neural networks to compute approximate and guaranteed feasible Hamilton-Jacobi-Bellman PDE solutions. (2016). arXiv preprint arXiv:1611.03158
[84] Jiang, G.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 6, 2126-2143 (2000) · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[85] Jianyu, L.; Siwei, L.; Yingjian, Q.; Yaping, H., Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural Netw., 16, 5-6, 729-734 (2003)
[86] Jin, S.; Xin, Z., Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, and relaxation schemes, SIAM J. Numer. Anal., 35, 6, 2385-2404 (1998) · Zbl 0921.65063 · doi:10.1137/S0036142996314366
[87] Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pp. 1-12. Association for Computing Machinery, New York, NY, USA (2017). 10.1145/3079856.3080246
[88] Kalise, D., Kundu, S., Kunisch, K.: Robust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equations. (2019). arXiv preprint arXiv:1905.06276 · Zbl 1443.49041
[89] Kalise, D.; Kunisch, K., Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs, SIAM J. Sci. Comput., 40, 2, A629-A652 (2018) · Zbl 1385.49022
[90] Kang, W.; Wilcox, LC, Mitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equations, Comput. Optim. Appl., 68, 2, 289-315 (2017) · Zbl 1383.49045
[91] Karlsen, K.; Risebro, H., A note on front tracking and the equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation laws, Nonlinear Anal. (2002) · Zbl 1010.35026 · doi:10.1016/S0362-546X(01)00753-2
[92] Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. (2017). arXiv preprint arXiv:1707.03351
[93] Khoo, Y.; Lu, J.; Ying, L., Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci., 6, 1, 1 (2019) · Zbl 1498.60222
[94] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015) (2015)
[95] Kružkov, SN, Generalized solutions of nonlinear first order equations with several independent variables II, Math. USSR-Sbornik, 1, 1, 93-116 (1967) · Zbl 0164.40802 · doi:10.1070/sm1967v001n01abeh001969
[96] Kundu, A., Srinivasan, S., Qin, E.C., Kalamkar, D., Mellempudi, N.K., Das, D., Banerjee, K., Kaul, B., Dubey, P.: K-tanh: Hardware efficient activations for deep learning (2019)
[97] Kunisch, K.; Volkwein, S.; Xie, L., HJB-POD-based feedback design for the optimal control of evolution problems, SIAM J. Appl. Dyn. Syst., 3, 4, 701-722 (2004) · Zbl 1058.35061
[98] Lagaris, IE; Likas, A.; Fotiadis, DI, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 5, 987-1000 (1998) · doi:10.1109/72.712178
[99] Lagaris, IE; Likas, AC; Papageorgiou, DG, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw., 11, 5, 1041-1049 (2000) · doi:10.1109/72.870037
[100] Lambrianides, P., Gong, Q., Venturi, D.: A new scalable algorithm for computational optimal control under uncertainty. (2019). arXiv preprint arXiv:1909.07960
[101] Landau, L., Lifschic, E.: Course of theoretical physics. vol. 1: Mechanics. Oxford, (1978)
[102] LeCun, Y.: 1.1 deep learning hardware: Past, present, and future. In: 2019 IEEE International Solid-State Circuits Conference—(ISSCC), pp. 12-19 (2019). 10.1109/ISSCC.2019.8662396
[103] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015)
[104] Lee, H.; Kang, IS, Neural algorithm for solving differential equations, J. Comput. Phys., 91, 1, 110-131 (1990) · Zbl 0717.65062
[105] Lions, PL; Rochet, JC, Hopf formula and multitime Hamilton-Jacobi equations, Proc. Am. Math. Soc., 96, 1, 79-84 (1986) · Zbl 0597.35079
[106] Lions, PL; Souganidis, PE, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations, Numerische Mathematik, 69, 4, 441-470 (1995) · Zbl 0834.65087 · doi:10.1007/s002110050102
[107] Long, Z.; Lu, Y.; Dong, B., PDE-net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys., 399, 108925 (2019) · Zbl 1454.65131 · doi:10.1016/j.jcp.2019.108925
[108] Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-net: Learning PDEs from data. (2017). arXiv preprint arXiv:1710.09668
[109] Lye, K.O., Mishra, S., Ray, D.: Deep learning observables in computational fluid dynamics. (2019). arXiv preprint arXiv:1903.03040 · Zbl 1436.76051
[110] McEneaney, W., Max-Plus Methods for Nonlinear Control and Estimation (2006), New York: Springer, New York · Zbl 1103.93005
[111] McEneaney, W., A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs, SIAM J. Control Optim., 46, 4, 1239-1276 (2007) · Zbl 1251.65168 · doi:10.1137/040610830
[112] McEneaney, W.M., Deshpande, A., Gaubert, S.: Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs. In: 2008 American Control Conference, pp. 4684-4690. IEEE (2008)
[113] McEneaney, WM; Kluberg, LJ, Convergence rate for a curse-of-dimensionality-free method for a class of HJB PDEs, SIAM J. Control Optim., 48, 5, 3052-3079 (2009) · Zbl 1218.35074
[114] McFall, KS; Mahan, JR, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions, IEEE Trans. Neural Netw., 20, 8, 1221-1233 (2009) · doi:10.1109/TNN.2009.2020735
[115] Meade, A.; Fernandez, A., The numerical solution of linear ordinary differential equations by feedforward neural networks, Math. Comput. Modell., 19, 12, 1-25 (1994) · Zbl 0807.65079 · doi:10.1016/0895-7177(94)90095-7
[116] Meng, X., Karniadakis, G.E.: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. (2019). arXiv preprint arXiv:1903.00104
[117] Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: PPINN: Parareal physics-informed neural network for time-dependent PDEs. (2019). arXiv preprint arXiv:1909.10145
[118] van Milligen, BP; Tribaldos, V.; Jiménez, JA, Neural network differential equation and plasma equilibrium solver, Phys. Rev. Lett., 75, 3594-3597 (1995) · doi:10.1103/PhysRevLett.75.3594
[119] Motta, M.; Rampazzo, F., Nonsmooth multi-time Hamilton-Jacobi systems, Indiana Univ. Math. J., 55, 5, 1573-1614 (2006) · Zbl 1114.49031
[120] Niarchos, K.N., Lygeros, J.: A neural approximation to continuous time reachability computations. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 6313-6318 (2006). 10.1109/CDC.2006.377358
[121] Osher, S.; Shu, C., High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28, 4, 907-922 (1991) · Zbl 0736.65066 · doi:10.1137/0728049
[122] Pang, G.; Lu, L.; Karniadakis, GE, fPINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput., 41, 4, A2603-A2626 (2019) · Zbl 1420.35459
[123] Pham, H., Pham, H., Warin, X.: Neural networks-based backward scheme for fully nonlinear PDEs. (2019). arXiv preprint arXiv:1908.00412
[124] Pinkus, A.: Approximation theory of the MLP model in neural networks. In: Acta numerica, 1999, Acta Numer., vol. 8, pp. 143-195. Cambridge University Press, Cambridge (1999) · Zbl 0959.68109
[125] Plaskacz, S.; Quincampoix, M., Oleinik-Lax formulas and multitime Hamilton-Jacobi systems, Nonlinear Anal. Theory, Methods Appl., 51, 6, 957-967 (2002) · Zbl 1019.49028 · doi:10.1016/S0362-546X(01)00871-9
[126] Raissi, M., Deep hidden physics models: Deep learning of nonlinear partial differential equations, J. Mach. Learn. Res., 19, 1, 932-955 (2018) · Zbl 1439.68021
[127] Raissi, M.: Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations. (2018). arXiv preprint arXiv:1804.07010
[128] Raissi, M.; Perdikaris, P.; Karniadakis, G., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[129] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. (2017). arXiv preprint arXiv:1711.10561 · Zbl 1382.65229
[130] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part ii): Data-driven discovery of nonlinear partial differential equations. (2017). arXiv preprint arXiv:1711.10566 · Zbl 1380.68339
[131] Reisinger, C., Zhang, Y.: Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems. (2019). arXiv preprint arXiv:1903.06652
[132] Rochet, J., The taxation principle and multi-time Hamilton-Jacobi equations, J. Math. Econ., 14, 2, 113-128 (1985) · Zbl 0594.90006 · doi:10.1016/0304-4068(85)90015-1
[133] Rockafellar, RT, Convex Analysis (1970), Princeton: Princeton University Press, Princeton · Zbl 0193.18401
[134] Royo, V.R., Tomlin, C.: Recursive regression with neural networks: Approximating the HJI PDE solution. (2016). arXiv preprint arXiv:1611.02739
[135] Rudd, K.; Muro, GD; Ferrari, S., A constrained backpropagation approach for the adaptive solution of partial differential equations, IEEE Trans. Neural Netw. Learn. Syst., 25, 3, 571-584 (2014) · doi:10.1109/TNNLS.2013.2277601
[136] Ruthotto, L., Osher, S., Li, W., Nurbekyan, L., Fung, S.W.: A machine learning framework for solving high-dimensional mean field game and mean field control problems. (2019). arXiv preprint arXiv:1912.01825
[137] Schmidhuber, J., Deep learning in neural networks: an overview, Neural Netw., 61, 85-117 (2015) · doi:10.1016/j.neunet.2014.09.003
[138] Sirignano, J.; Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[139] Tang, W., Shan, T., Dang, X., Li, M., Yang, F., Xu, S., Wu, J.: Study on a Poisson’s equation solver based on deep learning technique. In: 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), pp. 1-3 (2017). 10.1109/EDAPS.2017.8277017
[140] Tassa, Y.; Erez, T., Least squares solutions of the HJB equation with neural network value-function approximators, IEEE Trans. Neural Netw., 18, 4, 1031-1041 (2007) · doi:10.1109/TNN.2007.899249
[141] Tho, N., Hopf-Lax-Oleinik type formula for multi-time Hamilton-Jacobi equations, Acta Math. Vietnamica, 30, 275-287 (2005) · Zbl 1090.35062
[142] Todorov, E., Efficient computation of optimal actions, Proc. Natl. Acad. Sci., 106, 28, 11478-11483 (2009) · Zbl 1203.68327
[143] Uchiyama, T., Sonehara, N.: Solving inverse problems in nonlinear PDEs by recurrent neural networks. In: IEEE International Conference on Neural Networks, pp. 99-102. IEEE (1993)
[144] E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1-12 (2018) · Zbl 1392.35306
[145] E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349-380 (2017). 10.1007/s40304-017-0117-6 · Zbl 1382.65016
[146] E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: Multilevel picard iterations for solving smooth semilinear parabolic heat equations (2016)
[147] Widder, DV, The Heat Equation (1976), New York: Academic Press, New York
[148] Yadav, N., Yadav, A., Kumar, M.: An introduction to neural network methods for differential equations. SpringerBriefs in Applied Sciences and Technology. Springer, Dordrecht (2015). 10.1007/978-94-017-9816-7 · Zbl 1328.92006
[149] Yang, L., Zhang, D., Karniadakis, G.E.: Physics-informed generative adversarial networks for stochastic differential equations. (2018). arXiv preprint arXiv:1811.02033 · Zbl 1440.60065
[150] Yang, Y.; Perdikaris, P., Adversarial uncertainty quantification in physics-informed neural networks, J. Comput. Phys., 394, 136-152 (2019) · Zbl 1452.68171
[151] Yegorov, I., Dower, P.M.: Perspectives on characteristics based curse-of-dimensionality-free numerical approaches for solving Hamilton-Jacobi equations. Appl. Math. Optim. 1-49 (2017) · Zbl 1461.49028
[152] Zhang, D., Guo, L., Karniadakis, G.E.: Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. (2019). arXiv preprint arXiv:1905.01205 · Zbl 1440.60067
[153] Zhang, D.; Lu, L.; Guo, L.; Karniadakis, GE, Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems, J. Comput. Phys., 397, 108850 (2019) · Zbl 1454.65008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.