×

Proper generalized decomposition for multiscale and multiphysics problems. (English) Zbl 1269.74209

Summary: This paper is a review of the developments of the Proper Generalized Decomposition (PGD) method for the resolution, using the multiscale/multiphysics LATIN method, of the nonlinear, time-dependent problems ((visco)plasticity, damage, ...) encountered in computational mechanics. PGD leads to considerable savings in terms of computing time and storage, and makes engineering problems which would otherwise be completely out of range of industrial codes accessible.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Akel S, Nguyen QS (1989) Determination of the limit response in cyclic plasticity. In: Proceedings of 2nd international conference on computational plasticity. Barcelone, Spain, pp 639–650
[2] Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139(3):153–176 · Zbl 1195.76337 · doi:10.1016/j.jnnfm.2006.07.007
[3] Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: Transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121 · Zbl 1196.76047 · doi:10.1016/j.jnnfm.2007.03.009
[4] Beckert A (2000) Coupling fluid (CFD) and structural (FE) models using finite interpolation elements. Aerosp Sci Technol 47:13–22 · Zbl 0999.74106 · doi:10.1016/S1270-9638(00)00111-5
[5] Belytschko T, Smolinski P, Liu WK (1985) Stability of multi-time step partitioned integrators for first-order finite element systems. Comput Methods Appl Mech Eng 49(3):281–297 · Zbl 0599.65060 · doi:10.1016/0045-7825(85)90126-4
[6] Blom FJ (1998) A monolithic fluid-structure interaction algorithm applied to the piston problem. Comput Methods Appl Mech Eng 167:369–391 · Zbl 0948.76046 · doi:10.1016/S0045-7825(98)00151-0
[7] Bottasso CL (2002) Multiscale temporal integration. Comput Methods Appl Mech Eng 191(25–26):2815–2830 · Zbl 1012.70001 · doi:10.1016/S0045-7825(02)00219-0
[8] Caignot A, Ladevèze P, Néron D, Durand J-F (2010) Virtual testing for the prediction of damping in joints. Eng Comput 27(5):621–644 · doi:10.1108/02644401011050912
[9] Champaney L, Cognard J-Y, Ladevèze P (1999) Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput Struct 73:249–266 · Zbl 1049.74562 · doi:10.1016/S0045-7949(98)00285-5
[10] Champaney L, Boucard P-A, Guinard S (2008) Adaptive multi-analysis strategy for contact problems with friction: application to aerospace bolted joints. Comput Mech 42(2):305–316 · Zbl 1304.74063 · doi:10.1007/s00466-007-0213-7
[11] Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808–817
[12] Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197:400–413 · Zbl 1169.74530 · doi:10.1016/j.cma.2007.07.022
[13] Cognard J-Y, Ladevèze P (1993) A large time increment approach for cyclic plasticity. Int J Plast 9:114–157 · Zbl 0772.73028
[14] Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191:1129–1157 · Zbl 1021.74042 · doi:10.1016/S0045-7825(01)00190-6
[15] Comte F, Maitournam H, Burry P, Lan NTM (2006) A direct method for the solution of evolution problems. C R Mec 334(5):317–322 · Zbl 1108.74061 · doi:10.1016/j.crme.2006.02.007
[16] Coussy O (2004) Poromechanics. Wiley, New York
[17] Cresta P, Allix O, Rey C, Guinard S (2007) Nonlinear localization strategies for domain decomposition methods in structural mechanics. Comput Methods Appl Mech Eng 196(8):1436–1446 · Zbl 1173.74408 · doi:10.1016/j.cma.2006.03.013
[18] Devries F, Dumontet F, Duvaut G, Léné F (1989) Homogenization and damage for composite structures. Int J Numer Methods Eng 27:285–298 · Zbl 0709.73059 · doi:10.1002/nme.1620270206
[19] Dureisseix D, Farhat C (2001) A numerically scalable domain decomposition method for the solution of frictionless contact problems. Int J Numer Methods Eng 50:2643–2666 · Zbl 0988.74064 · doi:10.1002/nme.140
[20] Dureisseix D, Ladevèze P, Néron D, Schrefler BA (2003) A multi-time-scale strategy for multiphysics problems: application to poroelasticity. Int J Multiscale Comput Eng 1(4):387–400 · doi:10.1615/IntJMultCompEng.v1.i4.50
[21] Dureisseix D, Ladevèze P, Schrefler BA (2003) A computational strategy for multiphysics problems–application to poroelasticity. Int J Numer Methods Eng 56(10):1489–1510 · Zbl 1106.74425 · doi:10.1002/nme.622
[22] Farhat C, Chandesris M (2003) Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int J Numer Methods Eng 58:1397–1434 · Zbl 1032.74701 · doi:10.1002/nme.860
[23] Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182:499–515 · Zbl 0991.74069 · doi:10.1016/S0045-7825(99)00206-6
[24] Farhat C, Lesoinne M, LeTallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157:95–114 · Zbl 0951.74015 · doi:10.1016/S0045-7825(97)00216-8
[25] Faucher V, Combescure A (2003) A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics. Comput Methods Appl Mech Eng 192:509–533 · Zbl 1026.74072 · doi:10.1016/S0045-7825(02)00549-2
[26] Felippa CA, Geers TL (1988) Partitioned analysis for coupled mechanical systems. Eng Comput 5:123–133 · doi:10.1108/eb023730
[27] Felippa CA, Park KC (1980) Staggered transient analysis procedures for coupled mechanical systems: formulation. Comput Methods Appl Mech Eng 24:61–111 · Zbl 0453.73091 · doi:10.1016/0045-7825(80)90040-7
[28] Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247–3270 · Zbl 0985.76075 · doi:10.1016/S0045-7825(00)00391-1
[29] Feyel F (2003) A multilevel finite element (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233–3244 · Zbl 1054.74727 · doi:10.1016/S0045-7825(03)00348-7
[30] Fish J, Chen W (2001) Uniformly valid multiple spatial-temporal scale modeling for wave propagation in heterogeneous media. Mech Compos Mater Struct 8:81–99 · doi:10.1080/10759410151114965
[31] Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Comput Methods Appl Mech Eng 148:53–73 · Zbl 0924.73145 · doi:10.1016/S0045-7825(97)00030-3
[32] Golub GH, Loan CFV (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore
[33] Gosselet P, Chiaruttini V, Rey C, Feyel F (2004) A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems. Application to poroelasticity. Rev Eur Élém Finis 13(5/7):523–534 · Zbl 1226.76038 · doi:10.3166/reef.13.523-534
[34] Gravouil A, Combescure A (2001) Multi-time-step explicit implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50:199–225 · Zbl 0998.74033 · doi:10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A
[35] Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58:1545–1569 · Zbl 1032.74666 · doi:10.1002/nme.826
[36] Guennouni T (1988) On a computational method for cycling loading: the time homogenization. Math Model Numer Anal 22(3):417–455 (in French) · Zbl 0652.73023
[37] Guidault P, Allix O, Champaney L, Cornuault S (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197(5):381–399 · Zbl 1169.74604 · doi:10.1016/j.cma.2007.07.023
[38] Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196(4–6):1030–1047 · Zbl 1121.65354 · doi:10.1016/j.cma.2006.08.004
[39] Hibbitt, Karlson, Sorensen (eds) (1996) Abaqus/standard–user’s manual, vol I, pp 6.4.2–2 and 6.6.1–4
[40] Huet C (1990) Application of variational concepts to size effects in elastic heterogeneous bodies. J Mech Phys Solids 38(6):813–841 · doi:10.1016/0022-5096(90)90041-2
[41] Hughes TJR (1995) Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Comput Methods Appl Mech Eng 127:387–401 · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[42] Jolliffe I (1986) Principal component analysis. Springer, New York · Zbl 0584.62009
[43] Karhunen K (1943) Uber lineare methoden für wahrscheinigkeitsrechnung. Ann Acad Sci Fenn Ser A1 Math Phys 37:3–79
[44] Kouznetsova V, Geers M, Brekelmans W (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260 · Zbl 1058.74070 · doi:10.1002/nme.541
[45] Kunisch K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary HJB equation. Comput Math Appl 49(7–8):1113–1126 · Zbl 1080.93012 · doi:10.1016/j.camwa.2004.07.022
[46] Ladevèze J (1985). Algorithmes adaptés aux calculs vectoriels et parallèles pour des méthodes de décomposition de domaines. In: Actes du troisième colloque tendances actuelles en calcul de structures. Pluralis, pp 893–907
[47] Ladevèze P (1985) On a family of algorithms for structural mechanics. C R Acad Sci 300(2):41–44 (in French) · Zbl 0597.73089
[48] Ladevèze P (1989) The large time increment method for the analyse of structures with nonlinear constitutive relation described by internal variables. C R Acad Sci Paris 309(II):1095–1099
[49] Ladevèze P (1991) New advances in the large time increment method. In: Ladevèze P, Zienkiewicz OC (eds) New advances in computational structural mechanics. Elsevier, Amsterdam, pp 3–21
[50] Ladevèze P (1997). A computational technique for the integrals over the time-space domain in connection with the LATIN method. Technical Report 193, LMT-Cachan (in French)
[51] Ladevèze P (1999) Nonlinear computational structural mechanics–new approaches and non-incremental methods of calculation. Springer, Berlin · Zbl 0912.73003
[52] Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192:3061–3087 · Zbl 1054.74701 · doi:10.1016/S0045-7825(03)00341-4
[53] Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52:121–138 · doi:10.1002/nme.274
[54] Ladevèze P, Néron D, Gosselet P (2007) On a mixed and multiscale domain decomposition method. Comput Methods Appl Mech Eng 196:1526–1540 · Zbl 1173.74379 · doi:10.1016/j.cma.2006.05.014
[55] Ladevèze P, Néron D, Passieux J-C (2009) On multiscale computational mechanics with time-space homogenization. In: Fish J (ed) Multiscale methods–Bridging the scales in science and engineering, Chapter space time scale bridging methods. Oxford University Press, Oxford, pp 247–282 · Zbl 1446.74216
[56] Ladevèze P, Passieux J-C, Néron D (2010) The LATIN multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199:1287–1296 · Zbl 1227.74111 · doi:10.1016/j.cma.2009.06.023
[57] Lefik M, Schrefler B (2000) Modelling of nonstationary heat conduction problems in micro-periodic composites using homogenisation theory with corrective terms. Arch Mech 52(2):203–223 · Zbl 0969.80012
[58] Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, New York · Zbl 0935.74004
[59] Lewis RW, Schrefler BA, Simoni L (1991) Coupling versus uncoupling in soil consolidation. Int J Numer Anal Methods Geomech 15:533–548 · doi:10.1002/nag.1610150803
[60] Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43):5730–5742 · Zbl 1124.76042 · doi:10.1016/j.cma.2005.08.026
[61] Maday Y, Ronquist EM (2004) The reduced-basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258 · Zbl 1077.65120 · doi:10.1137/S1064827502419932
[62] Maman N, Farhat C (1995) Matching fluid and structure meshes for aeroelastic computations: a parallel approach. Comput Struct 54(4):779–785 · doi:10.1016/0045-7949(94)00359-B
[63] Matteazzi R, Schrefler B, Vitaliani R (1996) Comparisons of partitioned solution procedures for transient coupled problems in sequential and parallel processing. In: Advances in computational structures technology. Civil-Comp Ltd, Edinburgh, pp 351–357
[64] Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81:805–812 · doi:10.1016/S0045-7949(02)00409-1
[65] Michler C, Hulshoff SJ, van Brummelen EH, de Borst R (2004) A monolithic approach to fluid-structure interaction. Comput Struct 33:839–848 · Zbl 1053.76042
[66] Morand J-P, Ohayon R (1995) Fluid-structure interaction: applied numerical methods. Wiley, New York · Zbl 0834.73002
[67] Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupled physics. Int J Numer Methods Eng 73(6):783–804 · Zbl 1195.74039 · doi:10.1002/nme.2091
[68] Néron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time-space interface coupling. Int J Numer Methods Eng 75(9):1053–1084 · Zbl 1195.74191 · doi:10.1002/nme.2283
[69] Néron D, Ladevèze P, Dureisseix D, Schrefler BA (2004) Accounting for nonlinear aspects in multiphysics problems: Application to poroelasticity. In: Lecture notes in computer science, vol 3039, pp 612–620 · Zbl 1329.76339
[70] Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196(45–48):4521–4537 · Zbl 1173.80311 · doi:10.1016/j.cma.2007.05.016
[71] Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285 · Zbl 1360.65036 · doi:10.1007/s11831-009-9034-5
[72] Nouy A, Ladevèze P (2004) Multiscale computational strategy with time and space homogenization: a radial type approximation technique for solving micro problems. Int J Multiscale Comput Eng 170(2):557–574 · doi:10.1615/IntJMultCompEng.v2.i4.40
[73] Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172:3–25 · Zbl 0972.74014 · doi:10.1016/S0045-7825(98)00224-2
[74] Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: model problem, theory and two-dimensional application. Comput Methods Appl Mech Eng 124:79–112 · Zbl 1067.74521 · doi:10.1016/0045-7825(95)92707-9
[75] Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202:346–366 · Zbl 1288.65178 · doi:10.1016/j.jcp.2004.07.015
[76] Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: Overview and recent developments. Arch Comput Methods Eng 13(1):91–128 · Zbl 1142.76462 · doi:10.1007/BF02905932
[77] Sanchez-Palencia E (1974) Comportement local et macroscopique d’un type de milieux physiques hétérogènes. Int J Eng Sci 12(4):331–351 · Zbl 0275.76032 · doi:10.1016/0020-7225(74)90062-7
[78] Sanchez-Palencia E (1980) Non homogeneous media and vibration theory. Lect Notes Phys 127 · Zbl 0432.70002
[79] Turska E, Schrefler BA (1993) On convergence conditions of partitioned solution procedures for consolidation problems. Comput Methods Appl Mech Eng 106:51–63 · Zbl 0783.76064 · doi:10.1016/0045-7825(93)90184-Y
[80] Turska E, Schrefler BA (1994) On consistency, stability and convergence of staggered solution procedures. Rend Mat Acc Lincei 9(5):265–271 · Zbl 0815.65092
[81] Vermeer PA, Veruijt A (1981) An accuracy condition for consolidation by finite elements. Int J Numer Anal Methods Geomech 5:1–14 · Zbl 0456.73060 · doi:10.1002/nag.1610050103
[82] Violeau D, Ladeveze P, Lubineau G (2009) Micromodel-based simulations for laminated composites. Compos Sci Technol 69(9):1364–1371 · doi:10.1016/j.compscitech.2008.09.041
[83] Zohdi T, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin · Zbl 1085.74001
[84] Zohdi T, Oden J, Rodin G (1996) Hierarchical modeling of heterogeneous bodies. Comput Methods Appl Mech Eng 138(1–4):273–298 · Zbl 0921.73080 · doi:10.1016/S0045-7825(96)01106-1
[85] Zohdi TI (2004) Modeling and simulation of a class of coupled modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput Methods Appl Mech Eng 193:679–699 · Zbl 1060.74528 · doi:10.1016/j.cma.2003.11.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.