×

Nonparametric quantile scalar-on-image regression. (English) Zbl 07863985

Summary: A quantile scalar-on-image regression model is developed to comprehensively study the relationship between cognitive decline and various clinical covariates and imaging factors. As a motivating example, the high-dimensional brain imaging data from the research on Alzheimer’s disease are considered predictors of patients’ cognitive decline. A Bayesian nonparametric model is proposed to handle the complex spatially distributed imaging data, where the coefficient function is assumed to be a latent Gaussian process. A soft-thresholding operator is introduced to capture the sparse structure of the regression coefficients. Utilizing kernel basis functions to approximate the latent Gaussian process facilitates easy-to-implement computation and consistent estimation. Inference is performed within the Bayesian framework, using an efficient Markov chain Monte Carlo algorithm. The proposed method is compared with the functional principal component analysis method in simulations and applied to a study of Alzheimer’s disease.

MSC:

62-08 Computational methods for problems pertaining to statistics
Full Text: DOI

References:

[1] Birks, J. S.; Harvey, R. J., Donepezil for dementia due to Alzheimer’s disease
[2] Cai, T. T.; Hall, P., Prediction in functional linear regression. Ann. Stat., 5, 2159-2179 (2006) · Zbl 1106.62036
[3] Cardot, H.; Crambes, C.; Sarda, P., Quantile regression when the covariates are functions. J. Nonparametr. Stat., 7, 841-856 (2005) · Zbl 1077.62026
[4] Donoho, D. L.; Johnstone, I. M., Ideal spatial adaptation by wavelet shrinkage. Biometrika, 3, 425-455 (1994) · Zbl 0815.62019
[5] Feng, X. N.; Li, T. F.; Song, X. Y.; Zhu, H. T., Bayesian scalar on image regression with nonignorable nonresponse. J. Am. Stat. Assoc., 532, 1574-1597 (2020) · Zbl 1452.62479
[6] Gauthreaux, K.; Bonnett, T. A.; Besser, L. M.; Brenowitz, W. D.; Teylan, M.; Mock, C.; Chen, Y. C.; Chan, K. C.; Keene, C. D.; Zhou, X. H., Concordance of clinical Alzheimer diagnosis and neuropathological features at autopsy. J. Neuropathol. Exp. Neurol., 5, 465-473 (2020)
[7] Gelfand, A. E.; Diggle, P.; Guttorp, P.; Fuentes, M., Handbook of Spatial Statistics (2010), CRC Press · Zbl 1188.62284
[8] Goldsmith, J.; Huang, L.; Crainiceanu, C. M., Smooth scalar-on-image regression via spatial Bayesian variable selection. J. Comput. Graph. Stat., 1, 46-64 (2014)
[9] Hall, P.; Horowitz, J. L., Methodology and convergence rates for functional linear regression. Ann. Stat., 1, 70-91 (2007) · Zbl 1114.62048
[10] He, X. M.; Shao, Q. M., On parameters of increasing dimensions. J. Multivar. Anal., 1, 120-135 (2000) · Zbl 0948.62013
[11] Higdon, D.; Swall, J.; Kern, J., Non-stationary spatial modeling (2022), ArXiv preprint
[12] Kang, J.; Reich, B. J.; Staicu, A. M., Scalar-on-image regression via the soft-thresholded Gaussian process. Biometrika, 1, 165-184 (2018) · Zbl 07072406
[13] Kato, K., Estimation in functional linear quantile regression. Ann. Stat., 6, 3108-3136 (2012) · Zbl 1296.62104
[14] Kaufman, C. G.; Schervish, M. J.; Nychka, D. W., Covariance tapering for likelihood-based estimation in large spatial data sets. J. Am. Stat. Assoc., 484, 1545-1555 (2008) · Zbl 1286.62072
[15] Koenker, R., Quantile Regression. Econometric Society Monographs (2005), Cambridge University Press · Zbl 1111.62037
[16] Koenker, R.; Bassett, G., Regression quantiles. Econometrica, 33-50 (1978) · Zbl 0373.62038
[17] Kozumi, H.; Kobayashi, G., Gibbs sampling methods for Bayesian quantile regression. J. Stat. Comput. Simul., 11, 1565-1578 (2011) · Zbl 1431.62018
[18] Laakso, M.; Soininen, H.; Partanen, K.; Lehtovirta, M.; Hallikainen, M.; Hänninen, T.; Helkala, E.-L.; Vainio, P.; Riekkinen Sr, P., MRI of the hippocampus in Alzheimer’s disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol. Aging, 1, 23-31 (1998)
[19] Li, F.; Zhang, T. T.; Wang, Q. L.; Gonzalez, M. Z.; Maresh, E. L.; Coan, J. A., Spatial Bayesian variable selection and grouping for high-dimensional scalar-on-image regression. Ann. Appl. Stat., 687-713 (2015) · Zbl 1397.62458
[20] Li, Q.; Lin, N.; Xi, R. B., Bayesian regularized quantile regression. Bayesian Anal., 3, 533-556 (2010) · Zbl 1330.62143
[21] Lin, Y. T.; Seo, J.; Gao, F.; Feldman, H. M.; Wen, H. L.; Penney, J.; Cam, H. P.; Gjoneska, E.; Raja, W. K.; Cheng, J., APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron, 6, 1141-1154 (2018)
[22] Park, T.; Casella, G., The Bayesian lasso. J. Am. Stat. Assoc., 482, 681-686 (2008) · Zbl 1330.62292
[23] Sastre, A. A.; Sherriff, F.; McShane, R., Memantine for dementia
[24] Shi, J.; Thompson, P. M.; Gutman, B.; Wang, Y. L.; Initiative, A. D.N., Surface fluid registration of conformal representation: application to detect disease burden and genetic influence on hippocampus. NeuroImage, 111-134 (2013)
[25] Sriram, K.; Ramamoorthi, R.; Ghosh, P., Posterior consistency of Bayesian quantile regression based on the misspecified asymmetric Laplace density. Bayesian Anal., 2, 479-504 (2013) · Zbl 1329.62308
[26] Tibshirani, R., Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B, Methodol., 1, 267-288 (1996) · Zbl 0850.62538
[27] Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K., Sparsity and smoothness via the fused lasso. J. R. Stat. Soc., Ser. B, Stat. Methodol., 1, 91-108 (2005) · Zbl 1060.62049
[28] Wang, C. C.; Yang, Q.; Zhou, X. X.; Song, X. Y., Bayesian quantile latent factor on image regression. Struct. Equ. Model., 1-16 (2022)
[29] Wang, H. S.; Li, G. D.; Jiang, G. H., Robust regression shrinkage and consistent variable selection through the LAD-Lasso. J. Bus. Econ. Stat., 3, 347-355 (2007)
[30] Wang, X.; Zhu, H. T.; Initiative, A. D.N., Generalized scalar-on-image regression models via total variation. J. Am. Stat. Assoc., 519, 1156-1168 (2017)
[31] Wang, X. Q.; Song, X. Y.; Zhu, H. T., Bayesian latent factor on image regression with nonignorable missing data. Stat. Med., 4, 920-932 (2021)
[32] Wang, Y. L.; Song, Y.; Rajagopalan, P.; An, T.; Liu, K.; Chou, Y. Y.; Gutman, B.; Toga, A. W.; Thompson, P. M.; Initiative, A. D.N., Surface-based TBM boosts power to detect disease effects on the brain: an N= 804 ADNI study. NeuroImage, 4, 1993-2010 (2011)
[33] Wu, Y. C.; Liu, Y. F., Variable selection in quantile regression. Stat. Sin., 801-817 (2009) · Zbl 1166.62012
[34] Yang, Y., Novel methods for estimation and inference in varying coefficient models (2020), PhD thesis
[35] Yu, D.; Wang, L.; Kong, D.; Zhu, H., Mapping the genetic-imaging-clinical pathway with applications to Alzheimer’s disease. J. Am. Stat. Assoc., 540, 1656-1668 (2022) · Zbl 1515.62123
[36] Yu, K. M.; Lu, Z. D.; Stander, J., Quantile regression: applications and current research areas. J. R. Stat. Soc., Ser. D, Stat., 3, 331-350 (2003)
[37] Yu, K. M.; Moyeed, R. A., Bayesian quantile regression. Stat. Probab. Lett., 4, 437-447 (2001) · Zbl 0983.62017
[38] Zhang, Z. W.; Wang, X.; Kong, L. L.; Zhu, H. T., High-dimensional spatial quantile function-on-scalar regression. J. Am. Stat. Assoc., 539, 1563-1578 (2022) · Zbl 1506.62288
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.