×

Run-length function of the Bolyai-Rényi expansion of real numbers. (English) Zbl 07893382

Summary: By iterating the Bolyai-Rényi transformation \(T(x)=(x+1)^{2}\pmod 1\), almost every real number \(x\in [0,1)\) can be expanded as a continued radical expression \[x=-1+\sqrt {x_{1}+\sqrt {x_{2}+\cdots +\sqrt{x_{n}+\cdots}}}\] with digits \(x_{n}\in\{0,1,2\}\) for all \(n\in\mathbb{N}\). For any real number \(x\in [0,1)\) and digit \(i\in\{0,1,2\}\), let \(r_{n}(x,i)\) be the maximal length of consecutive \(i\)’s in the first \(n\) digits of the Bolyai-Rényi expansion of \(x\). We study the asymptotic behavior of the run-length function \(r_{n}(x,i)\). We prove that for any digit \(i\in\{0,1,2\}\), the Lebesgue measure of the set \[D(i)=\Bigl\{x\in [0,1)\colon\lim_{n\rightarrow\infty}\frac{r_n(x,i)}{\log n}=\frac{1}{\log\theta_{i}}\Bigr\}\] is \(1\), where \(\theta_{i}=1+\sqrt{4i+1}\). We also obtain that the level set \[E_{\alpha}(i)=\Bigl\{x\in [0,1)\colon\lim_{n\rightarrow\infty}\frac{r_n(x,i)}{\log n}=\alpha\Bigr\}\] is of full Hausdorff dimension for any \(0\leq\alpha\leq\infty\).

MSC:

11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
28A80 Fractals
Full Text: DOI

References:

[1] Erdős, P.; Rényi, A., On a new law of large numbers, J. Anal. Math. 23 (1970), 103-111 · Zbl 0225.60015 · doi:10.1007/BF02795493
[2] Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Chichester (2014) · Zbl 1285.28011 · doi:10.1002/0470013850
[3] Jenkinson, O.; Pollicott, M., Ergodic properties of the Bolyai-Rényi expansion, Indag. Math., New Ser. 11 (2000), 399-418 · Zbl 0977.11032 · doi:10.1016/S0019-3577(00)80006-3
[4] Ma, J.-H.; Wen, S.-Y.; Wen, Z.-Y., Egoroff’s theorem and maximal run length, Monatsh. Math. 151 (2007), 287-292 · Zbl 1170.28001 · doi:10.1007/s00605-007-0455-7
[5] Philipp, W., Some metrical theorems in number theory, Pac. J. Math. 20 (1967), 109-127 · Zbl 0144.04201 · doi:10.2140/pjm.1967.20.109
[6] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493 · Zbl 0079.08901 · doi:10.1007/BF02020331
[7] Song, T.; Zhou, Q., On the longest block function in continued fractions, Bull. Aust. Math. Soc. 102 (2020), 196-206 · Zbl 1464.11080 · doi:10.1017/S0004972720000076
[8] Sun, Y.; Xu, J., On the maximal run-length function in the Lüroth expansion, Czech. Math. J. 68 (2018), 277-291 · Zbl 1458.11125 · doi:10.21136/CMJ.2018.0474-16
[9] Tong, X.; Yu, Y.; Zhao, Y., On the maximal length of consecutive zero digits of \(\beta \)-expansions, Int. J. Number Theory 12 (2016), 625-633 · Zbl 1337.11053 · doi:10.1142/S1793042116500408
[10] Wang, B.-W.; Wu, J., On the maximal run-length function in continued fractions, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 34 (2011), 247-268
[11] Zou, R., Hausdorff dimension of the maximal run-length in dyadic expansion, Czech. Math. J. 61 (2011), 881-888 · Zbl 1249.11085 · doi:10.1007/s10587-011-0055-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.