×

High-order perturbation of surfaces algorithms for the simulation of localized surface plasmon resonances in graphene nanotubes. (English) Zbl 07236019

Summary: The plasmonics of two-dimensional materials, such as graphene, has become an important field over the past decade. The active tunability of graphene via electrical gating or chemical doping has generated a great deal of excitement among engineers seeking sensing devices. Consequently there is significant demand for robust and highly accurate computational capabilities which can simulate such materials. The class of High-Order Perturbation of Surfaces methods have proven to be particularly appropriate for this purpose. In this contribution we describe our recent efforts to utilize both Dirichlet-Neumann Operators and Impedance-Impedance Operators in these schemes. In addition, we present detailed numerical results which not only validate our simulations using the Method of Manufactured Solutions, but we also describe Localized Surface Plasmon Resonances in graphene nanotubes enclosing rod-shaped dielectric materials.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
41Axx Approximations and expansions
41-XX Approximations and expansions
Full Text: DOI

References:

[1] Angelis, C. D.; Locatelli, A.; Mutti, A.; Aceves, A., Coupling dynamics of 1d surface plasmon polaritons in hybrid graphene systems, Opt. Lett., 41, 480-483 (2016)
[2] Auditore, A.; de Angelis, C.; Locatelli, A.; Aceves, A. B., Tuning of surface plasmon polaritons beat length in graphene directional couplers, Opt. Lett., 38, 4228-4231 (2013)
[3] Baker, G. A.; Graves-Morris, P., Padé Approximants (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0923.41001
[4] Bao, Q.; Zhang, H.; Wang, B.; Ni, Z.; Lim, C. H.Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P., Broadband graphene polarizer, Nat. Photonics, 5, 411-415 (2011)
[5] Biswas, S. R.; Gutiérrez, C. E.; Nemilentsau, A.; Lee, I. H.; Oh, S. H.; Avouris, P.; Low, T., Tunable graphene metasurface reflectarray for cloaking, illusion, and focusing, Phys. Rev. Appl., 9, Article 034021 pp. (2018)
[6] Bludov, Y.; Ferreira, A.; Peres, N.; Vasilevskiy, M., A primer on surface plasmon-polaritons in graphene, Int. J. Mod. Phys. B, 27, Article 1341001 pp. (2013) · Zbl 1267.35225
[7] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover Publications Inc.: Dover Publications Inc. Mineola, NY · Zbl 0994.65128
[8] Bruno, O.; Reitich, F., Numerical solution of diffraction problems: a method of variation of boundaries, J. Opt. Soc. Am. A, 10, 1168-1175 (1993)
[9] Bruno, O.; Reitich, F., Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Padé approximants, and singularities, J. Opt. Soc. Am. A, 10, 2307-2316 (1993)
[10] Bruno, O.; Reitich, F., Numerical solution of diffraction problems: a method of variation of boundaries. III. Doubly periodic gratings, J. Opt. Soc. Am. A, 10, 2551-2562 (1993)
[11] Bruno, O. P.; Reitich, F., Boundary-variation solutions for bounded-obstacle scattering problems in three dimensions, J. Acoust. Soc. Am., 104, 2579-2583 (1998)
[12] Burggraf, O. R., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24, 113-151 (1966)
[13] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0658.76001
[14] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0893.35138
[15] Després, B., Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. Le théorème de Borg pour l’équation de Hill vectorielle (1991), Institut National de Recherche en Informatique et en Automatique (INRIA): Institut National de Recherche en Informatique et en Automatique (INRIA) Rocquencourt: Université de Paris IX (Dauphine): Institut National de Recherche en Informatique et en Automatique (INRIA): Institut National de Recherche en Informatique et en Automatique (INRIA) Rocquencourt: Université de Paris IX (Dauphine) Paris, Thèse · Zbl 0849.65085
[16] Després, B., Domain decomposition method and the Helmholtz problem, (Mathematical and Numerical Aspects of Wave Propagation Phenomena. Mathematical and Numerical Aspects of Wave Propagation Phenomena, Strasbourg, 1991 (1991), SIAM: SIAM Philadelphia, PA), 44-52
[17] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Methods for Incompressible Fluid Flow, Cambridge Monographs on Applied and Computational Mathematics, vol. 9 (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1007.76001
[18] Enoch, S.; Bonod, N., Plasmonics: From Basics to Advanced Topics, Springer Series in Optical Sciences (2012), Springer: Springer New York
[19] Fallahi, A.; Perruisseau-Carrier, J., Design of tunable biperiodic graphene metasurfaces, Phys. Rev. B, 86, Article 195408 pp. (2012)
[20] Fang, Z.; Liu, Z.; Wang, Y.; Ajayan, P. M.; Nordlander, P.; Halas, N. J., Graphene-antenna sandwich photodetector, Nano Lett., 12, 3808-3813 (2012)
[21] Freitag, M.; Low, T.; Zhu, W.; Yan, H.; Xia, F.; Avouris, P., Photocurrent in graphene harnessed by tunable intrinsic plasmons, Nat. Commun., 4, 1951 (2013)
[22] Geim, A., Random walk to graphene (Nobel lecture), Angew. Chem., Int. Ed., 50, 6966-6985 (2011)
[23] Gillman, A.; Barnett, A.; Martinsson, P., A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media, BIT Numer. Math., 55, 141-170 (2015) · Zbl 1312.65201
[24] Goncalves, P. A.D.; Peres, N. M.R., An Introduction to Graphene Plasmonics (2016), World Scientific: World Scientific Singapore
[25] Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; rez, R. P.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; Puma, E.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Konstantatos, G.; Koppens, F., Broadband image sensor array based on graphene-cmos integration, Nat. Photonics, 11, 366-371 (2017)
[26] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 26 (1977), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, Pa · Zbl 0412.65058
[27] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods, Texts in Applied Mathematics, vol. 54 (2008), Springer: Springer New York, Algorithms, analysis, and applications · Zbl 1134.65068
[28] Hu, H.; Yang, X.; Zhai, F.; Hu, D.; Liu, R.; Liu, K.; Sun, Z.; Dai, Q., Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons, Nat. Commun., 7, Article 12334 pp. (2016)
[29] Ihlenburg, F., Finite Element Analysis of Acoustic Scattering (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0908.65091
[30] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0628.65098
[31] Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H. A.; Liang, X.; Zettl, A.; Shen, Y. R.; Wang, F., Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., 6, 630-634 (2011)
[32] Koppens, F. H.L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol., 9, 780-793 (2014)
[33] LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations (2007), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, Steady-state and time-dependent problems · Zbl 1127.65080
[34] Li, Y.; Yan, H.; Farmer, D. B.; Meng, X. P.; Zhu, W.; Osgood, R.; Heinz, T. F.; Avouris, P., Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers, Nano Lett., 14, 3, 1573-1577 (2014)
[35] Liu, C.-H.; Chang, Y.-C.; Norris, T. B.; Zhong, Z., Graphene photodetectors with ultra-broadband and high responsivity at room temperature, Nat. Nanotechnol., 9, 273-278 (2014)
[36] Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X., A graphene-based broadband optical modulator, Nature, 474, 64-67 (2011)
[37] Nicholls, D. P., Three-dimensional acoustic scattering by layered media: a novel surface formulation with operator expansions implementation, Proc. R. Soc. Lond. A, 468, 731-758 (2012) · Zbl 1364.74048
[38] Nicholls, D. P., A method of field expansions for vector electromagnetic scattering by layered periodic crossed gratings, J. Opt. Soc. Am. A, 32, 701-709 (2015)
[39] Nicholls, D. P., High-order perturbation of surfaces short course: boundary value problems, (Lectures on the Theory of Water Waves. Lectures on the Theory of Water Waves, London Math. Soc. Lecture Note Ser., vol. 426 (2016), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 1-18 · Zbl 1360.76058
[40] Nicholls, D. P., High-order perturbation of surfaces short course: analyticity theory, (Lectures on the Theory of Water Waves. Lectures on the Theory of Water Waves, London Math. Soc. Lecture Note Ser., vol. 426 (2016), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 32-50 · Zbl 1360.76059
[41] Nicholls, D. P., Numerical simulation of grating structures incorporating two-dimensional materials: a high-order perturbation of surfaces framework, SIAM J. Appl. Math., 78, 19-44 (2018) · Zbl 1388.78008
[42] Nicholls, D. P., High-order spectral simulation of graphene ribbons, Commun. Comput. Phys., 26, 1575-1596 (2019) · Zbl 1473.78008
[43] Nicholls, D. P.; Nigam, N., Exact non-reflecting boundary conditions on general domains, J. Comput. Phys., 194, 278-303 (2004) · Zbl 1049.65132
[44] Nicholls, D. P.; Oh, S.-H.; Johnson, T. W.; Reitich, F., Launching surface plasmon waves via vanishingly small periodic gratings, J. Opt. Soc. Am. A, 33, 276-285 (2016)
[45] Nicholls, D. P.; Reitich, F., A new approach to analyticity of Dirichlet-Neumann operators, Proc. R. Soc. Edinb., Sect. A, 131, 1411-1433 (2001) · Zbl 1016.35030
[46] Nicholls, D. P.; Reitich, F., Stability of high-order perturbative methods for the computation of Dirichlet-Neumann operators, J. Comput. Phys., 170, 276-298 (2001) · Zbl 0983.65115
[47] Nicholls, D. P.; Reitich, F., Analytic continuation of Dirichlet-Neumann operators, Numer. Math., 94, 107-146 (2003) · Zbl 1030.65109
[48] Nicholls, D. P.; Reitich, F., Shape deformations in rough surface scattering: cancellations, conditioning, and convergence, J. Opt. Soc. Am. A, 21, 590-605 (2004)
[49] Nicholls, D. P.; Reitich, F., Shape deformations in rough surface scattering: improved algorithms, J. Opt. Soc. Am. A, 21, 606-621 (2004)
[50] Nicholls, D. P.; Shen, J., A stable, high-order method for two-dimensional bounded-obstacle scattering, SIAM J. Sci. Comput., 28, 1398-1419 (2006) · Zbl 1130.78007
[51] Nicholls, D. P.; Tong, X., A high-order perturbation of surfaces algorithm for the simulation of localized surface plasmon resonances in two dimensions, J. Sci. Comput., 76, 1370-1395 (2018) · Zbl 06945478
[52] Nicholls, D. P.; Tong, X., Simulation of localized surface plasmon resonances in two dimensions via impedance-impedance operators, SIAM J. Appl. Math. (2019), submitted for publication
[53] Novoselov, K., Graphene: materials in the flatland (Nobel lecture), Angew. Chem., Int. Ed., 50, 6986-7002 (2011)
[54] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004)
[55] Rayleigh, L., On the dynamical theory of gratings, Proc. R. Soc. Lond. A, 79, 399-416 (1907) · JFM 38.0842.03
[56] Rice, S. O., Reflection of electromagnetic waves from slightly rough surfaces, Commun. Pure Appl. Math., 4, 351-378 (1951) · Zbl 0043.20101
[57] Roache, P. J., Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 4-10 (2002)
[58] Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; García de Abajo, F. J.; Pruneri, V.; Altug, H., Mid-infrared plasmonic biosensing with graphene, Science, 349, 165-168 (2015)
[59] Roy, C. J., Review of code and solution verification procedures for computational simulation, J. Comput. Phys., 205, 131-156 (2005) · Zbl 1072.65118
[60] Sensale-Rodriguez, B.; Yan, R.; Kelly, M. M.; Fang, T.; Tahy, K.; Hwang, W. S.; Jena, D.; Liu, L.; Xing, H. G., Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun., 3, 780 (2012)
[61] Stauber, T.; Peres, N. M.R.; Castro Neto, A. H., Conductivity of suspended and non-suspended graphene at finite gate voltage, Phys. Rev. B, 78, Article 085418 pp. (2008)
[62] Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations (2004), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1071.65118
[63] Sun, Z.; Martinez, A.; Wang, F., Optical modulators with 2d layered materials, Nat. Photonics, 10, 227-238 (2016)
[64] Tymchenko, M.; Nikitin, A.; Martín-Moreno, L., Faraday rotation due to excitation of magnetoplasmons in graphene microribbons, ACS Nano, 7, 9780-9787 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.