×

Smoothed quantile regression with nonignorable dropouts. (English) Zbl 1493.62243

Summary: In this paper, we adopt a three-stage estimation procedure and statistical inference methods for quantile regression (QR) based on empirical likelihood (EL) approach with nonignorable dropouts. In the first stage, we consider a parametric model on the dropout propensity of response and handle the parameter identifiability issue by using nonresponse instrument. With the estimated dropout propensity, in the second stage the inverse probability weighting and kernel smoothing methods are applied to construct the bias-corrected and smoothed generalized estimating equations for nonignorable dropouts. In the third stage, borrowing the matrix expansion idea of quadratic inference function, we obtain the proposed estimators that can accommodate the within-subject correlations and improve the estimation efficiency simultaneously. A class of improved estimators and their confidence regions for QR coefficient are derived. Further, the penalized EL method and algorithm for variable selection are investigated. Simulation studies and a real example on HIV-CD4 data set are also provided to show the performance of the proposed estimators.

MSC:

62G20 Asymptotic properties of nonparametric inference
62G05 Nonparametric estimation
Full Text: DOI

References:

[1] Chen, J. and Chen, Z., Extended Bayesian information criterion for model selection with large sample space, Biometrika95 (2008) 759-771. · Zbl 1437.62415
[2] Cho, H., Hong, H. G. and Kim, M. O., Efficient quantile marginal regression for longitudinal data with dropouts, Biostatistics17 (2016) 561-575.
[3] Cho, H. and Qu, A., Efficient estimation for longitudinal data by combining large-dimensional moment conditions, Electron. J. Stat.9 (2015) 1315-1334. · Zbl 1327.62370
[4] Fan, J. and Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc.96 (2001) 1348-1360. · Zbl 1073.62547
[5] Fang, F. and Shao, J., Model selection with nonignorable nonresponse, Biometrika103 (2016) 861-874.
[6] Farcomeni, A., Quantile regression for longitudinal data based on latent Markov subject-specific parameters, Stat. Comput.22 (2012) 141-152. · Zbl 1322.62206
[7] Fu, L. and Wang, Y., Quantile regression for longitudinal data with a working correlation model, Comput. Statist. Data Anal.56 (2012) 2526-2538. · Zbl 1252.62046
[8] Geraci, M. and Bottai, M., Quantile regression for longitudinal data using the asymmetric Laplace distribution, Biostatistics8 (2007) 140-154. · Zbl 1170.62380
[9] Ghasemzadeh, S., Ganjali, M. and Baghfalaki, T., Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness, Metron76 (2018) 321-348. · Zbl 1427.62029
[10] Hansen, L. P., Large sample properties of generalized method of moments estimators, Econometrica50 (1982) 1029-1054. · Zbl 0502.62098
[11] Huang, J., Liu, L. and Liu, N., Estimation of large covariance matrices of longitudinal data with basis function approximations, J. Comput. Graph. Statist.16 (2007) 189-209.
[12] Kim, J. K. and Yu, C. L., A semiparametric estimation of mean functionals with nonignorable missing data, J. Amer. Statist. Assoc.106 (2011) 157-165. · Zbl 1396.62032
[13] Koenker, R., Quantile regression for longitudinal data, J. Multivariate Anal.91 (2004) 74-89. · Zbl 1051.62059
[14] Koenker, R., Quantiles Regression (Cambridge University Press, Cambridge, 2005). · Zbl 1111.62037
[15] Koenker, R. and Bassett, J. G., Regression quantiles, Econometrica46 (1978) 33-50. · Zbl 0373.62038
[16] Leng, C. and Zhang, W., Smoothing combined estimating equations in quantile regression for longitudinal data, Stat. Comput.24 (2014) 123-136. · Zbl 1325.62141
[17] Liang, K. and Zeger, S., Longitudinal data analysis using generalized linear models, Biometrika73 (1986) 13-22. · Zbl 0595.62110
[18] Little, R. J. A. and Rubin, D. B., Statistical Analysis with Missing Data, 2nd edn. (Wiley, New York, 2002). · Zbl 1011.62004
[19] Liu, M., Daniels, M. J. and Perri, M. G., Quantile regression in the presence of monotone missingness with sensitivity analysis, Biostatistics17 (2016) 108-121.
[20] Lv, J., Guo, C., Yang, H. and Li, Y., A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data, Comput. Statist. Data Anal.112 (2017) 129-144. · Zbl 1464.62124
[21] Lv, X. and Li, R., Smoothed empirical likelihood confidence intervals for quantile regression parameters with auxiliary information, Statist. Methodol.15 (2013) 46-54. · Zbl 1486.62117
[22] Miao, W. and Tchetgen, E. J., Identification and inference with nonignorable missing covariate data, Statist. Sinica28 (2018) 2049-2067. · Zbl 1406.62018
[23] Molenberghs, G. and Kenward, M., Missing Data in Clinical Studies (John Wiley and Sons, 2007).
[24] Otsu, T., Conditional empirical likelihood estimation and inference for quantile regression models, J. Econom.142 (2008) 508-538. · Zbl 1418.62165
[25] Owen, A., Empirical likelihood confidence regions, Ann. Statist.18 (1990) 90-120. · Zbl 0712.62040
[26] Qin, J. and Lawless, J., Empirical likelihood and general estimating equations, Ann. Statist.22 (1994) 300-325. · Zbl 0799.62049
[27] Qu, A., Lindsay, B. G. and Li, B., Improving generalised estimating equations using quadratic inference functions, Biometrika87 (2000) 823-836. · Zbl 1028.62045
[28] Rao, J. N. K. and Scott,, A. J.The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables, J. Amer. Statist. Assoc.76 (1981) 221-230. · Zbl 0473.62010
[29] Robins, J. M., Rotnitzky, A. and Zhao, L., Estimation of regression coefficients when some regressors are not always observed, J. Amer. Statist. Assoc.89 (1994) 846-866. · Zbl 0815.62043
[30] Schwarz, G., Estimating the dimension of a model, Ann. Statist.6 (1978) 461-464. · Zbl 0379.62005
[31] Shao, J. and Wang, L., Semiparametric inverse propensity weighting for nonignorable missing data, Biometrika103 (2016) 175-187. · Zbl 1452.62294
[32] Wang, H., Li, B. and Leng, C., Shrinkage tuning parameter selection with a diverging number of parameters, J. R. Stat. Soc. Ser. B Stat. Methodol.71 (2009) 671-683. · Zbl 1250.62036
[33] Wang, L. and Ma, W., Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts, Ann. Inst. Statist. Math.73 (2020) 623-647. · Zbl 1469.62313
[34] Wang, L., Qi, C. and Shao, J., Model-assisted regression estimators for longitudinal data with nonignorable dropout, Int. Stat. Rev.87 (2019) S121-S138. · Zbl 07767683
[35] Wang, S., Shao, J. and Kim, J. K., An instrumental variable approach for identification and estimation with nonignorable nonresponse, Statist. Sinica24 (2014) 1097-1116. · Zbl 1534.62039
[36] Wang, H. and Zhu, Z., Empirical likelihood for quantile regression models with longitudinal data, J. Statist. Plann. Inference141 (2011) 1603-1615. · Zbl 1204.62072
[37] Whang, Y. J., Smoothed empirical likelihood methods for quantile regression models, Econometric Theory22 (2006) 173-205. · Zbl 1138.62017
[38] Yuan, Y. and Yin, G., Bayesian quantile regression for longitudinal studies with nonignorable missing data, Biometrics66 (2010) 105-114. · Zbl 1187.62183
[39] Zhang, T. and Wang, L., Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response, to appear in Comput. Statist. Data Anal. (2020), https://doi.org/10.1016/j.csda.2019.106888. · Zbl 1504.62059
[40] Zou, H. and Yuan, M., Composite quantile regression and the oracle model selection theory, Statist.36 (2008) 1108-1126. · Zbl 1360.62394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.