×

Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis. (English) Zbl 1373.35324

Summary: In this paper, we consider a predator-prey model with herd behavior and prey-taxis subject to the homogeneous Neumann boundary condition. First, by analyzing the characteristic equation, the local stability of the positive equilibrium is discussed. Then, choosing prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of nonconstant solutions bifurcating from the positive equilibrium by an abstract bifurcation theory, and find the stable bifurcating solutions near the bifurcation point under suitable conditions. We have shown that prey-taxis can destabilize the uniform equilibrium and yields the occurrence of spatial patterns. Furthermore, some numerical simulations to illustrate the theoretical analysis are also carried out, Turing patterns such as spots pattern, spots-strip pattern, strip pattern, stable nonconstant steady-state solutions, and spatially inhomogeneous periodic solutions are obtained, which also expand our theoretical results.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
35B32 Bifurcations in context of PDEs
Full Text: DOI

References:

[1] A. J.Lotka, Relation between birth rates and death rates, Science, 26:21-22 (1907).
[2] V.Volterra, Sui tentativi di applicazione della matematiche alle scienze biologiche e sociali, G. Econ.23:436-458 (1901). · JFM 32.0080.03
[3] A. A.Berryman, The origin and evolution of predator‐prey theory, Ecol. Soc. Am.73:1530-1535 (1992).
[4] M.Perc, A.Szolnoki, and G.Szabó, Cyclical interactions with alliance‐specific heterogeneous invasion rates, Phys. Rev. E75:052102 (2007).
[5] M.Perc and A.Szolnoki, Noise‐guided evolution within cyclical interactions, New J. Phys.9:267 (2007).
[6] A.Szolnoki, M.Mobilia, L.Jiang, B.Szczesny, A. M.Rucklidge, and M.Perc, Cyclic dominance in evolutionary games: A review, J. R. Soc. Interface11:20140735 (2014).
[7] A.Szolnoki, M.Perc, and G.Szabó, Phase diagrams for three‐strategy evolutionary prisoner’s dilemma games on regular graphs, Phys. Rev. E80:056104 (2009).
[8] A.Szolnoki and M.Perc, Reward and cooperation in the spatial public goods game, EPL92:38003 (2010).
[9] A.Szolnoki and M.Perc, Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies, Phys. Rev. X3:041021 (2013).
[10] C.Castellano, S.Fortunato, and V.Loreto, Statistical physics of social dynamics, Rev. Mod. Phys.81(2): 591-646 (2009).
[11] M.Perc and P.Grigolini, Collective behavior and evolutionary games: An introduction. Chaos Solitons Fractals56:1-5 (2013). · Zbl 1351.00028
[12] V.Ajraldi, M.Pittavino, and E.Venturino, Modeling herd behavior in population systems, Nonlinear Anal. Real World Appl.12:2319-233 (2011). · Zbl 1225.49037
[13] Peter A.Braza, Predator‐prey dynamics with square root functional responses, Nonlinear Anal. Real World Appl.13:1837-1843 (2012). · Zbl 1254.92072
[14] M.Wang, Stability and Hopf bifurcation for a predator‐prey model with prey‐stage structure and diffusion, Math. Biosci.212:149-160 (2008). · Zbl 1138.92034
[15] F.Yi, J.Wei, and J.Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusion predator‐prey system, J. Differ. Equ.246:1944-1977 (2009). · Zbl 1203.35030
[16] Y.Song and X.Zou, Bifurcation analysis of a diffusive ratio‐dependent predator‐prey model, Nonlinear Dyn.78:49-70 (2014). · Zbl 1314.92144
[17] X.Tang and Y.Song, Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator‐prey model with herd behavior, Appl. Math. Comput.254:375-391 (2015). · Zbl 1410.37092
[18] Y.Song and X.Zou, Spatiotemporal dynamics in a diffusive ratio‐dependent predator‐prey model near a Hopf-Turing bifurcation point, Comput. Math. Appl.67:1978-1997 (2014). · Zbl 1366.92111
[19] Z.Xie, Turing instability in a coupled predator‐prey model with different Holling type functional responses, Discrete Contin. Dyn. Syst. Ser. S4:1621-1628 (2011). · Zbl 1214.92072
[20] X.Tang and Y.Song, Bifurcation analysis and Turing instability in a diffusive predator‐prey model with herd behavior and hyperbolic mortality, Chaos Solitons Fractals81:303-314 (2015). · Zbl 1355.92098
[21] W.Wang, L.Zhang, H.Wang, and Z.Li, Pattern formation of a predator‐prey system with Ivlev‐type functional response, Ecol. Model.221:131-140 (2010).
[22] Y.Cai, M.Banerjee, Y.Kang, and W.Wang, Spatiotemporal complexity in a predator‐prey model with weak allee effects, Math. Biosci. Eng.11:1247-1274 (2014). · Zbl 1308.35028
[23] X.Tang and Y.Song, Cross‐diffusion induced spatiotemporal patterns in a predator‐prey model with herd behavior, Nonlinear Anal. Real World Appl.24:36-49 (2015). · Zbl 1336.92073
[24] G.Hu, X.Li, and Y.Wang, Pattern formation and spatiotemporal chaos in a reaction‐diffusion predator‐prey system, Nonlinear Dyn.81:265-275 (2015). · Zbl 1347.35224
[25] Y.Song, T.Zhang, and Y.Peng, Turing‐Hopf bifurcation in the reaction‐diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul.33:229-258 (2016). · Zbl 1510.35150
[26] X.Tang, Y.Song, and T.Zhang, Turing‐Hopf bifurcation analysis of a predator‐prey model with herd behavior and cross‐diffusion, Nonlinear Dyn.86(1): 73-89 (2016). · Zbl 1349.37091
[27] P.Kareiva and G.Odell, Swarms of predators exhibit “preytaxis” if individual predators use area‐restricted search, Am. Nat.130:233-270 (1987).
[28] A.Okubo and H. C.Chiang, An analysis of the kinematics of swarming of Anarete pritchardi Kim, Res. Popul. Ecol.16:1-42 (1974).
[29] C.Hauzy, F. D.Hulot, A.Gins, and M.Loreau, Intra‐ and interspecific density‐dependent dispersal in an aquatic prey‐predator system, J. Anim. Ecol.76:552-558 (2007).
[30] A.Chakraborty and M.Singh, Effect of prey‐taxis on the periodicity of predator‐prey dynamics, Can. Appl. Math. Q.16:255-278 (2008). · Zbl 1181.92079
[31] K.Painter and T.Hillen, Volume‐filling and quorum‐sensing in models for chemosensitive movement, Can. Appl. Math. Q.10:501-543 (2002). · Zbl 1057.92013
[32] T.Hillen and K.Painter, A users guide to PDE models for chemotaxis, J. Math. Biol.58:183-217 (2009). · Zbl 1161.92003
[33] B.Dubey, B.Das, and J.Hussain, A predator‐prey interaction model with self and cross‐diffusion, Ecol. Model.141:67-76 (2001).
[34] J.Jorn, Negative ionic cross diffusion coefficients in electrolytic solutions, J. Theor. Biol.55:529-532 (1975).
[35] D.Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, Am. Nat.151:97-115 (1998).
[36] B. E.Ainseba, M.Bendahmane, and A.Noussair, A reaction‐diffusion system modeling predator‐prey with prey‐taxis, Nonlinear Anal. Real World Appl.9:2086-2105 (2008). · Zbl 1156.35404
[37] P.Liu, J.Shi, and Z.Wang, Pattern formation of the attraction‐repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. B.18:2597-2625 (2013). · Zbl 1277.35048
[38] Y.Tao, Global existence of classical solutions to a predator‐prey model with nonlinear prey‐taxis, Nonlinear Anal. Real World Appl.11:2056-2064 (2010). · Zbl 1195.35171
[39] C.Li, X.Wang, and Y.Shao, Steady states of a predator‐prey model with prey‐taxis, Nonlinear Anal.97:155-168 (2014). · Zbl 1287.35018
[40] X.He and S.Zheng, Global boundedness of solutions in a reaction‐diffusion system of predator‐prey model with prey‐taxis, Appl. Math. Lett.49:73-77 (2015). · Zbl 1381.35188
[41] X.Wang, W.Wang, and G.Zhang, Global bifurcation of solutions for a predator‐prey model with prey‐taxis, Math. Methods Appl. Sci.38:431-443 (2015). · Zbl 1307.92333
[42] J. M.Lee, T.Hilllen, and M. A.Lewis, Continuous traveling waves for prey‐taxis, Bull. Math. Biol.70:654-676 (2008). · Zbl 1142.92043
[43] J. M.Lee, T.Hilllen, and M. A.Lewis, Pattern formation in prey‐taxis systems, J. Biol. Dyn.3:551-573 (2009). · Zbl 1315.92064
[44] K.Wang and Q.Wang, Stationary and time periodic patterns of two‐predator and one‐prey systems with prey‐taxis, arXiv:1508.03909 (2015).
[45] W.Ko and K.Ryu, Qualitative analysis of a predator‐prey model with Holling type II functional response incorporating a prey refuge, J. Differ. Equ.231:534-550 (2006). · Zbl 1387.35588
[46] J.Shi and X.Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differ. Equ.7:2788-2812 (2009). · Zbl 1165.35358
[47] M. G.Crandall and P. H.Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal.8:321-340 (1971). · Zbl 0219.46015
[48] T.Kato, Study of partial differential equations by means of functional analysis, Classics in Mathematics, Springer‐Verlag, New York, 1996. · Zbl 0870.35116
[49] M. G.Crandalland and P. H.Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Ration. Mech. Anal.52:161-180 (1973). · Zbl 0275.47044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.