×

Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation. (English) Zbl 1382.35035

Summary: Intertidal mussels can self-organize into periodic spot, stripe, labyrinth, and gap patterns ranging from centimeter to meter scales. The leading mathematical explanations for these phenomena are the reaction-diffusion-advection model and the phase separation model. This paper continues the series studies on analytically understanding the existence of pattern solutions in the reaction-diffusion mussel-algae model. The stability of the positive constant steady state and the existence of Hopf and steady-state bifurcations are studied by analyzing the corresponding characteristic equation. Furthermore, we focus on the Turing-Hopf (TH) bifurcation and obtain the explicit dynamical classification in its neighborhood by calculating and investigating the normal form on the center manifold. Using theoretical and numerical simulations, we demonstrates that this TH interaction would significantly enhance the diversity of spatial patterns and trigger the alternative paths for the pattern development.

MSC:

35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
92D40 Ecology
35B36 Pattern formations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
Full Text: DOI

References:

[1] F. Borgogno, P. D’Odorico, F. Laio, and L. Ridolfi, {\it Mathematical models of vegetation pattern formation in ecohydrology}, Rev. Geophys., 47 (2009), .
[2] M. Baurmann, T. Gross, and U. Feudel, {\it Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations}, J. Theoret. Biol., 245 (2007), pp. 220-229. · Zbl 1451.92248
[3] R. A. Cangelosi, D. J. Wollkind, B. J. Kealy-Dichone, and I. Chaiya, {\it Nonlinear stability analyses of Turing patterns for a mussel-algae model}, J. Math. Biol., 70 (2015), pp. 1249-1294. · Zbl 1456.35028
[4] S. S. Chen and J. P. Shi, {\it Global attractivity of equilibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays}, Nonlinear Anal. RWA, 14 (2013), pp. 1871-1886. · Zbl 1274.92020
[5] M. C. Cross and P. C. Hohenberg, {\it Pattern formation outside of equilibrium}, Rev. Mod. Phys., 65 (1993), pp. 835-844. · Zbl 1371.37001
[6] V. Dakos, S. Kéfi, M. Rietkerk, E. H. van Nes, and M. Scheffer, {\it Slowing down in spatially patterned ecosystems at the brink of collapse vasilis}, Amer. Naturalist, 177 (6) (2011), pp. E153-E166.
[7] J. J. A. Donker, M. van der Vegt, and P. Hoekstra, {\it Erosion of an intertidal mussel bed by ice- and wave-action}, Continental Shelf Res., 106 (2015), pp. 60-69.
[8] W. M. Durham, E. Climent, M. Barry, F. De Lillo, G. Boffetta, M. Cencini, and R. Stocker, {\it Turbulence drives microscale patches of motile phytoplankton}, Nat. Comm., 4 (2013), 2148.
[9] T. Faria, {\it Normal forms and Hopf bifurcation for partial differential equations with delay}, Trans. Amer. Math. Soc., 352 (2000), pp. 2217-2238. · Zbl 0955.35008
[10] T. Faria, {\it Stability and bifurcation for a delayed predator-prey model and the effect of diffusion}, J. Math. Anal. Appl., 254 (2001), pp. 433-463. · Zbl 0973.35034
[11] G. H. Guo, B. F. Li, and X. L. Lin, {\it Hopf bifurcation in spatially homogeneous and inhomogeneous autocatalysis models}, Comput. Math. Appl., 67 (2014), pp. 151-163. · Zbl 1353.35292
[12] A. Ghazaryan and V. Manukian, {\it Coherent structures in a population model for mussel-algae interaction}, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 893-913. · Zbl 1314.35196
[13] S. Kéfi, M. Rietkerk., C. L. Alados, Y. Pueyo, V. P. Papanastasis, A. ElAich, and P. C. de Ruiter, {\it Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems}, Nature, 449 (2007), pp. 213-217.
[14] C. A. Klausmeier, {\it Regular and irregular patterns in semiarid vegetation}, Science, 285 (1999), pp. 838-838.
[15] Y. A. Kuznetsov, {\it Elements of Applied Bifurcation Theory}, 2nd ed., Springer-Verlag, New York, 1998. · Zbl 0914.58025
[16] X. Li and W. H. Jiang, {\it Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model}, IMA J. Appl. Math., 78 (2013), pp. 287-306. · Zbl 1267.35236
[17] Q.-X. Liu, A. Doelman, V. Rottsch \(\ddot{a}\) fer, M. D. Jager, P. M. J. Herman, M. Rietkerk, and J. van de Koppel, {\it Phase separation explains a new class of self-organized spatial patterns in ecological systems}, Proc. Natl. Acad. Sci., 110 (2013), pp. 11905-11910.
[18] Q.-X. Liu, P. M. J. Herman, W. M. Mooij, J. Huisman, M. Scheffer, H. Olff, and J. van de Koppel, {\it Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems}, Nat. Comm., 5 (2014), .
[19] Q.-X. Liu, E. J. Weerman, R. Gupta, P. M. J. Herman, H. Olff, and J. van de Koppel, {\it Biogenic gradients in algal density affect the emergent properties of spatially self-organized mussel beds}, J. R. Soc. Interface, 6 (2014), pp. 2014-0089.
[20] Q.-X. Liu, E. J. Weerman, P. M. J. Herman, H. Olff, and J. van de Koppel, {\it Alternative mechanisms alter the emergent properties of self-organization in mussel beds}, Proc. R. Soc. B, 279 (2012), pp. 2744-2753.
[21] Q.-X. Liu, M. Rietkerk, P. M. Herman, T. Piersma, J. M. Fryxell, and J. van de Koppel, {\it Phase separation driven by density-dependent movement: a novel mechanism for ecological patterns}, Phys. Life Rev., (19) 2016, pp. 107-121.
[22] M. J. Ma and J. J. Hu, {\it Bifurcation and stability analysis of steady states to a Brusselator model}, Appl. Math. Comput., 236 (2014), pp. 580-592. · Zbl 1334.37047
[23] H. Meinhardt, {\it Models of biological pattern formation}. Academic Press, London, 1982.
[24] M. Meixner, A. De Wit, S. Bose, and E. Scholl, {\it Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations}, Phys. Rev. E, 55 (1997), pp. 6690-6697.
[25] H. Meinhardt, P. Prusinkiewicz, and D. R. Fowler, {\it The algorithmic beauty of sea shells}, 3rd ed., Springer, Berlin, 2003. · Zbl 1156.00326
[26] J. D. Murray, {\it Mathematical Biology} II, Springer-Verlag, Heidelberg, 2002. · Zbl 1006.92001
[27] Q. Ouyang and H. L. Swinney, {\it Transition from a uniform state to hexagonal and striped Turing patterns}, Nature, 352 (1991), pp. 610-612.
[28] R. Peng, {\it Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model, part} I, J. Differential Equations, 247 (2009), pp. 1096-1119. · Zbl 1165.92035
[29] R. Peng and F. Q. Yi, {\it Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement}, Phy. D, 259 (2013), pp. 8-25. · Zbl 1321.92076
[30] R. Peng, F. Q. Yi, and X. Q. Zhao, {\it Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme}, J. Differential Equations, 254 (2013), pp. 2465-2498. · Zbl 1270.35090
[31] M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de Koppel, {\it Self-organized patchiness and catastrophic shifts in ecosystems}, Science 305 (2004), pp. 1926-1929.
[32] M. Rietkerk and J. van de Koppel, {\it Regular pattern formation in real ecosystems}, Trends Ecol. Evolu., 23 (2008), pp. 169-175.
[33] L. A. D. Rodrigues, D. C. Mistro, and S. Petrovskii, {\it Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system}, Bull. Math. Biol., 73 (2011), pp. 1812-1840. · Zbl 1220.92053
[34] A. Rovinsky and M. Menzinger, {\it Interaction of Turing and Hopf bifurcations in chemical systems}, Phys. Rev. A, 46 (1992), pp. 6315-6322.
[35] J. A. Sherratt, {\it Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments} I, Nonlinearity, 23 (2010), pp. 2657-2675. · Zbl 1197.92047
[36] J. A. Sherratt, {\it Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments} II: {\it patterns with the largest possible propagation speeds}, Proc. R. Soc. Lond. A, 467 (2011), pp. 3272-3294. · Zbl 1239.92085
[37] J. A. Sherratt, {\it Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments} V, {\it the transition from patterns to desert}, SIAM J. Appl. Math., 73 (2013), pp. 1347-1367. · Zbl 1320.92078
[38] J. A. Sherratt, {\it Periodic travelling waves in integrodifferential equations for nonlocal dispersa}, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 1517-1541. · Zbl 1515.35303
[39] J. A. Sherratt, {\it Using wavelength and slope to infer the historical origin of semi-arid vegetation bands}, Proc. Natl. Acad. Sci. USA 112 (2015), pp. 4202-4207.
[40] M. Scheffer, S. R. Carpenter, T. M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. van de Koppel, I. van de Leemput, S. Levin, E. H. Van Nes, M. Pascual, and J. Vandermeer, {\it Anticipating critical transitions}, Science 338 (2012), pp. 344-348.
[41] J. A. Sherratt and G. J. Lord, {\it Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments}, Theor. Popn. Biol., 71 (2007), pp. 1-11. · Zbl 1118.92064
[42] J. A. Sherratt and J. J. Mackenzie, {\it How does tidal flow affect pattern formation in mussel beds?} J. Theor. Biol. 406 (2016), pp. 83-92. · Zbl 1344.92189
[43] H. B. Shi and S. G. Ruan, {\it Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference}, IMA J. Appl. Math., (2015), . · Zbl 1327.35376
[44] Y. L. Song and X. S. Tang, {\it Stability, steady-state bifurcations, and Turing patterns in a predator–prey model with herd behavior and prey‐taxis}, Stud. Appl. Math. (2017), . · Zbl 1373.35324
[45] Y. L. Song and X. F. Zou, {\it Bifurcation analysis of a diffusive ratio-dependent predator-prey model}, Nonlinear Dyn., 78 (2014), pp. 49-70. · Zbl 1314.92144
[46] Y. L. Song and X. F. Zou, {\it Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point}, Comput. Math. Appl., 67 (2014), pp. 1978-1997. · Zbl 1366.92111
[47] Y. L. Song, T. H. Zhang, and Y. H. Peng, {\it Turing-Hopf bifurcation in the reaction-diffusion equations and applications}, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), pp. 229-258. · Zbl 1510.35150
[48] A. M. Turing, {\it The chemical basis of morphogenesis}, Phil. Trans. R. Soc. Lond., B237 (1952), pp. 37-72. · Zbl 1403.92034
[49] J. van de Koppel, J. C. Gascoigne, G. Theraulaz, M. Rietkerk, W. M. Mooij, and P. M. J. Herman, {\it Experimental evidence for spatial self-organization in mussel bed ecosystems}, Science, 322 (2008), pp. 739-742.
[50] J. van de Koppel, M. Rietkerk, N. Dankers, and P. M. J. Herman, {\it Scale-dependent feedback and regular spatial Patterns in Young Mussel Beds}, Amer. Naturalist, 165 (2005), pp. 66-77.
[51] W. M. Wang, Y. L. Cai, M. J. Wu, K. F. Wang, and Z. Q. Li, {\it Complex dynamics of a reaction-diffusion epidemic model}, Nonlinear Anal. RWA, 13 (2012), pp. 2240-2258. · Zbl 1327.92069
[52] R. H. Wang, Q. X. Liu, G. Q. Sun, Z. Jin, and J. van de Koppel, {\it Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds}, J. R. Soc. Interface, 6 (2009), pp. 705-718.
[53] J. F. Wang, J. P. Shi, and J. J. Wei, {\it Dyanmics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey}, J. Differential Equations, 251 (2011), pp. 1276-1304. · Zbl 1228.35037
[54] R. Z. Yang and J. J. Wei, {\it Stability and bifurcation analysis of a diffusive prey-predator system in Holling type III with a prey refuge}, Nonlinear Dyn., 79 (2015), pp. 631-646. · Zbl 1331.92140
[55] F. Q. Yi, J. J. Wei, and J. P. Shi, {\it Diffusion-driven instability and bifurcation in the Lengyel-Epstein system}, Nonlinear Anal. RWA., 9 (2008), pp. 1038-1051. · Zbl 1146.35384
[56] F. Q. Yi, J. J. Wei, and J. P. Shi, {\it Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator-prey system}, J. Differential Equations, 246 (2009), pp. 1944-1977. · Zbl 1203.35030
[57] S. L. Yuan, C. Q. Xu, and T. H. Zhang, {\it Spatial dynamics in a predator-prey model with herd behavior}, Chaos, 23 (2013), 0331023. · Zbl 1323.92197
[58] J. F. Zhang, W. T. Li, and X. P. Yan, {\it Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models}, Appl. Math. Comput., 218 (2011), pp. 1883-1893. · Zbl 1228.92082
[59] T. H. Zhang, Y. P. Xing, H. Zang, and M. A. Han, {\it Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality}, Nonlinear Dyn., 78 (2014), pp. 265-277.
[60] H. Y. Zhao, X. X. Huang, and X. B. Zhang, {\it Turing instability and pattern formation of neural networks with reaction-diffusion terms}, Nonlinear Dyn., 76 (2014), pp. 115-124. · Zbl 1319.92010
[61] W. J. Zuo and J. J. Wei, {\it Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model}, Dyn. Partial Differential Equations, 8 (2011), pp. 363-384. · Zbl 1254.35115
[62] L. F. Yang and I. R. Epstein, {\it Ocillatory Turing patterns in reaction-diffusion systems with two coupled layers}, Phys. Rev. Lett., 90 (2003), pp. 178-303.
[63] L. F. Yang, A. M. Zhabotinsky, and I. R. Epstein, {\it Stable squares and other ocillatory Turing patterns in a reaction-diffusion model}, Phys. Rev. Lett., 92 (2004), pp. 198-303.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.