×

Definite orthogonal modular forms: computations, excursions, and discoveries. (English) Zbl 1535.11063

Summary: We consider spaces of modular forms attached to definite orthogonal groups of low even rank and nontrivial level, equipped with Hecke operators defined by Kneser neighbours. After reviewing algorithms to compute with these spaces, we investigate endoscopy using theta series and a theorem of Rallis. Along the way, we exhibit many examples and pose several conjectures. As a first application, we express counts of Kneser neighbours in terms of coefficients of classical or Siegel modular forms, complementing work of Chenevier-Lannes. As a second application, we prove new instances of Eisenstein congruences of Ramanujan and Kurokawa-Mizumoto type.

MSC:

11F27 Theta series; Weil representation; theta correspondences
11F33 Congruences for modular and \(p\)-adic modular forms
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

Software:

LMFDB; Magma; LiE; GitHub

References:

[1] Aizenbud, A.; Gourevitch, D.; Rallis, S.; Schiffmann, G., Multiplicity one theorems, Ann. Math. (2), 172, 2, 1407-1434 (2010) · Zbl 1202.22012 · doi:10.4007/annals.2010.172.1407
[2] Asai, T., On certain Dirichlet series associated with Hilbert modular forms and Rankin’s method, Math. Ann., 226, 1, 81-94 (1977) · Zbl 0326.10024 · doi:10.1007/BF01391220
[3] Assaf, E., Greenberg, M., Hein, J., Voight, J.: Algebraic modular forms (2022). https://github.com/assaferan/ModFrmAlg
[4] Assaf, E., Fretwell, D., Ingalls, C., Logan, A., Secord, S., Voight, J.: Orthogonal Modular Forms Attached to Quaternary Lattices
[5] Bergström, J.; Dummigan, N., Eisenstein congruences for split reductive groups, Sel. Math. New Ser., 22, 1073-1115 (2016) · Zbl 1404.11048 · doi:10.1007/s00029-015-0211-0
[6] Birch, B.J.: Hecke actions on classes of ternary quadratic forms. Computational number theory (Debrecen, 1989), pp. 191-212 (1991) · Zbl 0748.11023
[7] Böcherer, S.: On Yoshida’s Theta Lift, Cohomology of Arithmetic Groups and Automorphic Forms, Lecture Notes in Mathematics, Springer vol. 1447, (pp. 77-84) (1989)
[8] Böcherer, S.; Schulze-Pillot, R., Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J., 121, 35-96 (1991) · Zbl 0726.11030 · doi:10.1017/S0027763000003391
[9] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system I The user language, J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[10] Chenevier, G., Lannes, J.: Automorphic forms and even unimodular lattices, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 69, Springer, Cham (2019). Translated from the French by Reinie Erné · Zbl 1430.11001
[11] Cohen, AM; Murray, SH; Taylor, DE, Computing in groups of Lie type, Math. Comput., 73, 247, 1477-1498 (2004) · Zbl 1062.20049 · doi:10.1090/S0025-5718-03-01582-5
[12] Conway, JH; Sloane, NJA, Sphere Packings, Lattices and Groups, 3rd edn, Grundlehren der Mathematischen Wissenschaften 290 (1999), New York: Springer, New York · Zbl 0915.52003 · doi:10.1007/978-1-4757-6568-7
[13] de Graaf, WA, Constructing representations of split semisimple Lie algebras, J. Pure Appl. Algebra, 164, 1-2, 87-107 (2001) · Zbl 1006.17001 · doi:10.1016/S0022-4049(00)00150-X
[14] Doi, K., Naganuma, H.: On the functional equation of certain Dirichlet series. Invent. Math. 9, 1-14 (1969/70), doi:10.1007/BF01389886 · Zbl 0182.54301
[15] Dummigan, N.; Fretwell, D., Ramanujan-style congruences of local origin, J. Number Theory, 143, 248-261 (2014) · Zbl 1304.11027 · doi:10.1016/j.jnt.2014.04.008
[16] Dummigan, N.; Fretwell, D., Automorphic forms for some even unimodular lattices, Abh. Math. Sem. Univ. Hamburg, 91, 19-67 (2021) · Zbl 1483.11089 · doi:10.1007/s12188-021-00231-5
[17] Dummigan, N., Pacetti, A., Rama, G., Tornaría, G.: Quinary forms and paramodular forms. (2021) arXiv:2112.03797
[18] Freitag, E.: Die Wirkung von Heckeoperatoren auf Thetareihen mit harmonischen Koeffizienten. Math. Ann. 258(4), 419-440 (1981/82), doi:10.1007/BF01453976 (German) · Zbl 0485.10021
[19] Freitag, E.: Singular modular forms and their relations, Lecture Notes in Mathematics 1487. Springer (1991) · Zbl 0744.11024
[20] Fretwell, D., Generic level \(p\) Eisenstein congruences for \(\text{GSp}_4\), J. Number Theory, 180, 673-693 (2017) · Zbl 1421.11038 · doi:10.1016/j.jnt.2017.05.004
[21] Fulton, W., Harris, J.: Representation theory: a first course, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York (1991). Readings in Mathematics · Zbl 0744.22001
[22] Greenberg, M.; Voight, J., Lattice methods for algebraic modular forms on classical groups, Comput. Modular Forms (2014) · Zbl 1375.11043 · doi:10.1007/978-3-319-03847-6_6
[23] Gross, BH, Algebraic modular forms, Israel J. Math., 113, 61-93 (1999) · Zbl 0965.11020 · doi:10.1007/BF02780173
[24] Harder, G.: A congruence between a Siegel and an elliptic modular form, The 1-2-3 of modular forms, pp. 247-260 (2008), doi:10.1007/978-3-540-74119-0. Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004, Edited by Kristian Ranestad · Zbl 1259.11049
[25] Hein, J.: Orthogonal modular forms: an application to a conjecture of Birch (2016). https://collections.dartmouth.edu/archive/object/dcdis/dcdis-hein2016
[26] Hein, J., Tornaría, G., Voight, J.: Computing Hilbert modular forms as orthogonal modular forms (2022)
[27] Ibukiyama, T., Quinary lattices and binary quaternion Hermitian lattices, Tohoku Math. J. (2), 71, 2, 207-220 (2019) · Zbl 1465.11093 · doi:10.2748/tmj/1561082596
[28] Kikuta, T.; Takemori, S., Sturm bounds for Siegel modular forms of degree 2 and odd weights, Math. Z., 291, 3-4, 1419-1434 (2019) · Zbl 1443.11052 · doi:10.1007/s00209-018-2213-z
[29] Kneser, M., Klassenzahlen definiter quadratischer Formen, Arch. Math., 8, 241-250 (1957) · Zbl 0078.03801 · doi:10.1007/BF01898782
[30] Kurokawa, N., Congruences between Siegel modular forms of degree 2, Proc. Jpn. Acad., 55A, 417-422 (1979) · Zbl 0454.10016
[31] Mégarbané, T., Calcul des opérateurs de Hecke sur les classes d’isomorphisme de réseaux pairs de déterminant 2 en dimension 23 et 25, J. Number Theory, 186, 370-416 (2018) · Zbl 1444.11093 · doi:10.1016/j.jnt.2017.10.009
[32] Mizumoto, S., Congruences for eigenvalues of Hecke operators on Siegel modular forms of degree two, Math. Ann., 275, 149-161 (1986) · Zbl 0578.10032 · doi:10.1007/BF01458589
[33] Murphy, D. K.: Algebraic modular forms on definite orthogonal groups (2013), https://stacks.stanford.edu/file/druid:pv404zw1184/thesis.pdftk-augmented.pdf
[34] Nguyen, PQ; Stehlé, D., Low-dimensional lattice basis reduction revisited, ACM Trans. Algorithms, 5, 4, 48 (2009) · Zbl 1300.11133 · doi:10.1145/1597036.1597050
[35] Pitale, A.: Siegel Modular Forms: A Classical and Representation-Theoretic Approach, Lecture Notes in Mathematics (Springer) 2240 (2019) · Zbl 1455.11004
[36] Plesken, W.; Souvignier, B., Computing isometries of lattices, J. Symbolic Comput., 24, 3-4, 327-334 (1997) · Zbl 0882.11042 · doi:10.1006/jsco.1996.0130
[37] Ponomarev, P., Arithmetic of quaternary quadratic forms, Acta Arith., 29, 1, 1-48 (1976) · Zbl 0321.10023 · doi:10.4064/aa-29-1-1-48
[38] Rallis, S., Langlands’ functoriality and the weil representation, Am. J. Math., 104, 3, 469-515 (1982) · Zbl 0532.22016 · doi:10.2307/2374151
[39] Rama, G., Tornaría, G.: Computation of paramodular forms, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, pp. 353-370 (2020) · Zbl 1460.11149
[40] Ribet, KA, A modular construction of unramified \(p\)-extensions of \(\mathbb{Q} (\mu_p)\), Invent. Math., 34, 151-162 (1976) · Zbl 0338.12003 · doi:10.1007/BF01403065
[41] Siegel, CL, Lectures on the Geometry of Numbers (1989), New York: Springer, New York · Zbl 0691.10021 · doi:10.1007/978-3-662-08287-4
[42] Sikirić, M. D., Haensch, A., Voight, J., van Woerden, W.P.J.: A canonical form for positive definite matrices, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 4, Math. Sci. Publ., Berkeley, CA, pp. 179-195 (2020), doi:10.2140/obs.2020.4.179 · Zbl 1471.11209
[43] Taïbi, O., Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc. (JEMS), 21, 839-871 (2019) · Zbl 1430.11074 · doi:10.4171/JEMS/852
[44] The LMFDB Collaboration, The L-functions and modular forms database (2022). accessed 3 March 2022
[45] van Leeuwen, MAA, LiE, a software package for Lie group computations, Euromath Bull., 1, 2, 83-94 (1994) · Zbl 0807.17001
[46] Yoshida, H., Siegel’s modular forms and the arithmetic of quadratic forms, Invent. Math., 60, 3, 193-248 (1980) · Zbl 0453.10022 · doi:10.1007/BF01390016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.