×

Nonmonotonicity of traveling wave profiles for a unimodal recursive system. (English) Zbl 1485.35107

Summary: Recursive systems of unimodal type may exhibit rich propagation dynamics. The shape of traveling wave profiles is one of the unsolved questions in this challenging topic. In this paper, we obtain criteria for the nonmonotonicity of wave profiles in terms of an eigenvalue problem. The proofs rely on establishing several nonlocal Harnack type inequalities, which may be of interest on their own. The existence and uniqueness of traveling waves are also obtained based on these inequalities.

MSC:

35C07 Traveling wave solutions
35R09 Integro-partial differential equations
39A12 Discrete version of topics in analysis
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] M. Aguerrea, C. Gomez, and S. Trofimchuk, On uniqueness of semi-wavefronts, Math. Ann., 354 (2012), pp. 73-109. · Zbl 1311.45008
[2] A. Bourgeois, V. LeBlanc, and F. Lutscher, Spreading phenomena in integro-difference equations with nonmonotone growth functions, SIAM J. Appl. Math., 78 (2018), pp. 2950-2972. · Zbl 1408.39004
[3] A. Bourgeois, V. LeBlanc, and F. Lutscher, Dynamical stabilization and traveling waves in integrodifference equations, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), pp. 3029-3045. · Zbl 1479.37080
[4] S. Dewhirst and F. Lutscher, Dispersal in heterogeneous habitats: Thresholds, spatial scales and approximate rates of spread, Ecology, 90 (2009), pp. 1338-1345.
[5] O. Diekmann and H.G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), pp. 721-737. · Zbl 0433.92028
[6] J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), pp. 3678-3704. · Zbl 1315.35051
[7] S.-B. Hsu and X.-Q. Zhao, Spreading speed and traveling waves for non-monotone intergro-difference equations,. SIAM J. Math. Anal., 40 (2008), pp. 776-789. · Zbl 1160.37031
[8] M. Kot, Discrete-time traveling waves: Ecological examples, J. Math. Biol., 30 (1992), pp. 413-436. · Zbl 0825.92126
[9] M. Kot and W.M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986), pp. 109-136. · Zbl 0595.92011
[10] J. Latore, P. Gould, and A. Mortimer, Spatial dynamics and critical patch size of annual plant populations, J. Theoret. Biol., 190 (1998), pp. 277-285.
[11] M.A. Lewis, B. Li, and H.F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), pp. 219-233. · Zbl 1032.92031
[12] B. Li, Traveling wave solutions in a plant population model with a seed bank, J. Math. Biol., 65 (2012), pp. 855-873. · Zbl 1251.92042
[13] B. Li, M.A. Lewis, and H.F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), pp. 323-338. · Zbl 1162.92030
[14] B. Li, H.F. Weinberger, and M.A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), pp. 82-98. · Zbl 1075.92043
[15] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), pp. 1-40. · Zbl 1106.76008
[16] X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), pp. 857-903. · Zbl 1201.35068
[17] G. Lin, Traveling wave solutions for integro-difference systems, J. Differential Equations, 258 (2015), pp. 2908-2940. · Zbl 1309.45007
[18] R. Lui, A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data, SIAM J. Math. Anal., 13 (1982), pp. 913-937. · Zbl 0508.45006
[19] R. Lui, A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support, SIAM J. Math. Anal., 13 (1982), pp. 938-953. · Zbl 0508.45007
[20] R. Lui, A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case, SIAM J. Math. Anal., 16 (1985), pp. 1180-1206. · Zbl 0585.45001
[21] R. Lui, A nonlinear integral operator arising from a model in population genetics. IV. Clines SIAM J. Math. Anal., 1986 (1986), pp. 152-168. · Zbl 0592.45007
[22] F. Lutscher, Density-dependent dispersal in integro-difference equations, J. Math. Biol., 56 (2008), pp. 499-524. · Zbl 1143.92038
[23] F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, New York, 2019. · Zbl 1445.45001
[24] F. Lutscher and N. Van Minh, Traveling waves in discrete models of biological populations with sessile stages, Nonlinear Anal. Real World Appl., 14 (2013), pp. 495-506. · Zbl 1263.92049
[25] N. Marculis and R. Lui, Modelling the biological invasion of Carcinus maenas (the European green crab), J. Biol. Dyn., 10 (2016), pp. 140-163. · Zbl 1448.92232
[26] D. Mistro, L. Rodrigues, and A. Schmid, A mathematical model for dispersal of an annual plant population with a seed bank, Ecol. Model., 188 (2005), pp. 52-61.
[27] Y. Pan, J. Fang, and J. Wei, Seasonal influence on age-structured invasive species with yearly generation, SIAM J. Appl. Math., 78 (2018), pp. 1842-1862. · Zbl 1396.92073
[28] Y. Pan, Y. Su, and J. Wei, Bistable waves of a recursive system arising from seasonal age-structured population models, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), pp. 511-528. · Zbl 1404.39017
[29] Y. Pan, Y. Su, and J. Wei, Accelerating propagation in a recursive system arising from seasonal population models with nonlocal dispersal, J. Differential Equations, 267 (2019), pp. 150-179. · Zbl 1411.35266
[30] H.R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), pp. 173-187. · Zbl 0417.92022
[31] D. Volkov and R. Lui, Spreading speed and traveling wave solutions of a partially sedentary population, IMA J. Appl. Math., 72 (2007), pp. 801-816. · Zbl 1128.92026
[32] M.-H. Wang, M. Kot, and G.M. Neubert, Integrodifference equations, Allee effects, and invasions, J. Math. Biol., 44 (2002), pp. 150-168. · Zbl 0991.92032
[33] H.F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), pp. 353-396. · Zbl 0529.92010
[34] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), pp. 511-548. · Zbl 1058.92036
[35] H.F. Weinberger, K. Kawasaki, and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol., 57 (2008), pp. 387-411. · Zbl 1141.92041
[36] H.F. Weinberger, M.A. Lewis, and B. Li, Analysis of linear determinacy for spreading cooperative models, J. Math. Biol., 45 (2002), pp. 183-218. · Zbl 1023.92040
[37] H.F. Weinberger and X.-Q. Zhao, An extension of the formula for spreading speeds, Math. Biosci. Eng., 7 (2010), pp. 187-194. · Zbl 1202.92080
[38] Z.X. Yu and R. Yuan, Properties of traveling waves for integrodifference equations with nonmonotone growth functions, Z. Angew. Math. Phys., 63 (2012), pp. 249-259. · Zbl 1251.39005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.