×

Quasi-projective synchronization of discrete-time fractional-order quaternion-valued neural networks. (English) Zbl 1508.93278

Summary: In this article, without decomposing the quaternion-valued neural networks (QVNNs) into two complex-valued subsystems or four real-valued subsystems, quasi-projective synchronization of discrete-time fractional-order QVNNs is investigated. To this end, the sign function for quaternion number is introduced and some related properties are given. Then, two inequalities are built according to the nabla fractional difference and quaternion theory. Subsequently, a simple linear quaternion-valued controller is designed, and some synchronization conditions are given by means of our created inequalities. Finally, numerical simulations are given to prove the feasibility and correctness of the theoretical results.

MSC:

93D99 Stability of control systems
93C55 Discrete-time control/observation systems
26A33 Fractional derivatives and integrals
11R52 Quaternion and other division algebras: arithmetic, zeta functions
93B70 Networked control
Full Text: DOI

References:

[1] Hu, X.; Feng, G.; Duan, S.; Liu, L., A memristive multilayer cellular neural network with applications to image processing, IEEE Trans. Neural Netw. Learn. Syst., 28, 8, 1889-1901 (2016)
[2] Hoppensteadt, F.; Izhikevich, E., Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Netw., 11, 3, 734-738 (2000)
[3] Ferreira, R.; Martiniano, A.; Ferreira, A.; Sassi, R., Study on daily demand forecasting orders using artificial neural network, IEEE Lat. Am. Trans., 14, 3, 1519-1525 (2016)
[4] Aouiti, C.; Bessifi, M., Finite-time and fixed-time sliding mode control for discontinuous nonidentical recurrent neural networks with time-varying delays, Int. J. Robust Nonlinear Control, 32, 3, 1194-1208 (2022) · Zbl 1527.93381
[5] Rajchakit, G.; Sriraman, R., Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays, Neural Process. Lett., 53, 1, 581-606 (2021)
[6] Isokawa, T.; Kusakabe, T.; Matsui, N.; Peper, F., Quaternion neural network and its application, Knowledge-Based Intelligent Information and Engineering Systems, 318-324 (2003), Springer
[7] Zou, C.; Kou, K.; Wang, Y., Quaternion collaborative and sparse representation with application to color face recognition, IEEE Trans. Image Process., 25, 7, 3287-3302 (2016) · Zbl 1408.94854
[8] Took, C.; Strbac, G.; Aihara, K.; Mandic, D., Quaternion-valued short-term joint forecasting of three-dimensional wind and atmospheric parameters, Renew. Energy, 36, 6, 1754-1760 (2011)
[9] Vigneshwaran, S.; Sundararajan, N.; Saratchandran, P., Direction of arrival (DOA) estimation under array sensor failures using a minimal resource allocation neural network, IEEE Trans. Antennas Propag., 55, 2, 334-343 (2007)
[10] Aouiti, C.; Cao, J.; Jallouli, H.; Huang, C., Finite-time stabilization for fractional-order inertial neural networks with time varying delays, Nonlinear Anal., 27, 1, 1-18 (2022) · Zbl 1485.93512
[11] Pratap, A.; Raja, R.; Sowmiya, C.; Bagdasar, O.; Cao, J.; Rajchakit, G., Global projective lag synchronization of fractional order memristor based BAM neural networks with mixed time varying delays, Asian J. Control, 22, 1, 570-583 (2020) · Zbl 07872604
[12] Humphries, U.; Rajchakit, G.; Kaewmesri, P.; Chanthorn, P.; Sriraman, R.; Samidurai, R.; Lim, C., Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks, Mathematics, 8, 5, 801 (2020)
[13] Zhang, S.; Yu, Y.; Yu, J., LMI conditions for global stability of fractional-order neural networks, IEEE Trans. Neural Netw. Learn. Syst., 28, 10, 2423-2433 (2016)
[14] Pratap, A.; Raja, R.; Rajchakit, G.; Cao, J.; Bagdasar, O., Mittag-Leffler state estimator design and synchronization analysis for fractional-order BAM neural networks with time delays, Int. J. Adapt. Control, 33, 5, 855-874 (2019) · Zbl 1418.93124
[15] Chanthorn, P.; Rajchakit, G.; Ramalingam, S.; Lim, C.; Ramachandran, R., Robust dissipativity analysis of Hopfield-type complex-valued neural networks with time-varying delays and linear fractional uncertainties, Mathematics, 8, 4, 595 (2020)
[16] Xiao, J.; Cao, J.; Cheng, J.; Zhong, S.; Wen, S., Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks, Inf. Sci., 526, 221-244 (2020) · Zbl 1458.34102
[17] Pratap, A.; Raja, R.; Alzabut, J.; Dianavinnarasi, J.; Cao, J.; Rajchakit, G., Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses, Neural Process. Lett., 51, 2, 1485-1526 (2020)
[18] Song, Q.; Chen, Y.; Zhao, Z.; Liu, Y.; Alsaadi, F., Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties, Neurocomputing, 420, 70-81 (2021)
[19] Chen, S.; Li, H.; Kao, Y.; Zhang, L.; Hu, C., Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach, J. Frankl. Inst., 358, 15, 7650-7673 (2021) · Zbl 1472.93161
[20] Pecora, L.; Carroll, T., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821-824 (1990) · Zbl 0938.37019
[21] Ha, S.; Chen, L.; Liu, H., Command filtered adaptive neural network synchronization control of fractional-order chaotic systems subject to unknown dead zones, J. Frankl. Inst., 358, 7, 3376-3402 (2021) · Zbl 1464.93075
[22] Lu, W.; Chen, T., Synchronization of coupled connected neural networks with delays, IEEE Trans. Circuits Syst. I, 51, 12, 2491-2503 (2004) · Zbl 1371.34118
[23] Hu, M.; Xu, Z., Adaptive feedback controller for projective synchronization, Nonlinear Anal., 9, 3, 1253-1260 (2008) · Zbl 1144.93364
[24] Yang, X.; Li, C.; Huang, T.; Song, Q.; Huang, J., Global Mittag-Leffler synchronization of fractional-order neural networks via impulsive control, Neural Process. Lett., 48, 1, 459-479 (2018)
[25] Kandasamy, U.; Li, X.; Rajan, R., Quasi-synchronization and bifurcation results on fractional-order quaternion-valued neural networks, IEEE Trans. Neural Netw. Learn. Syst., 31, 10, 4063-4072 (2019)
[26] Zhang, W.; Cao, J.; Wu, R.; Chen, D.; Alsaadi, F., Novel results on projective synchronization of fractional-order neural networks with multiple time delays, Chaos, Solitons Fractals, 117, 76-83 (2018) · Zbl 1442.93019
[27] Liu, P.; Zeng, Z.; Wang, J., Asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., 31, 11, 4956-4967 (2020)
[28] Narayanan, G.; Ali, M.; Alam, M.; Rajchakit, G.; Boonsatit, N.; Kumar, P.; Hammachukiattikul, P., Adaptive fuzzy feedback controller design for finite-time Mittag-Leffler synchronization of fractional-order quaternion-valued reaction-diffusion fuzzy molecular modeling of delayed neural networks, IEEE Access, 9, 130862-130883 (2021)
[29] Bao, H.; Cao, J., Projective synchronization of fractional-order memristor-based neural networks, Neural Netw., 63, 1-9 (2015) · Zbl 1323.93036
[30] Yang, S.; Yu, J.; Hu, C.; Jiang, H., Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks, Neural Netw., 104, 104-113 (2018) · Zbl 1441.93287
[31] Zhang, W.; Sha, C.; Cao, J.; Wang, G.; Wang, Y., Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field, Appl. Math. Comput., 400, 126045 (2021) · Zbl 1508.93183
[32] Wu, G.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K., Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Anal., 24, 919-936 (2019) · Zbl 1434.39006
[33] Li, H.; Jiang, H.; Cao, J., Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays, Neurocomputing, 385, 211-219 (2020)
[34] Li, R.; Cao, J.; Xue, C.; Manivannan, R., Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks, Appl. Math. Comput., 395, 125851 (2021) · Zbl 1508.39005
[35] Gu, Y.; Wang, H.; Yu, Y., Synchronization for fractional-order discrete-time neural networks with time delays, Appl. Math. Comput., 372, 124995 (2020) · Zbl 1433.34070
[36] Liu, X.; Yu, Y., Synchronization analysis for discrete fractional-order complex-valued neural networks with time delays, Neural. Comput. Appl., 33, 16, 10503-10514 (2021)
[37] Abdeljawad, T.; Baleanu, D., Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos, Solitons Fractals, 102, 106-110 (2017) · Zbl 1374.26011
[38] You, X.; Song, Q.; Zhao, Z., Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay, Neural Netw., 122, 382-394 (2020) · Zbl 1444.93025
[39] Wei, Y., Fractional difference inequalities with their implications to the stability analysis of nabla fractional order systems, Nonlinear Dyn., 104, 4, 3643-3654 (2021)
[40] Yan, H.; Qiao, Y.; Duan, L.; Miao, J., Novel methods to global Mittag-Leffler stability of delayed fractional-order quaternion-valued neural networks, Neural Netw., 142, 500-508 (2021) · Zbl 1526.93252
[41] Xiong, K.; Yu, J.; Hu, C.; Jiang, H., Synchronization in finite/fixed time of fully complex-valued dynamical networks via nonseparation approach, J. Frankl. Inst., 357, 1, 473-493 (2020) · Zbl 1429.93145
[42] Maharajan, C.; Raja, R.; Cao, J.; Rajchakit, G.; Alsaedi, A., Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays, Chaos, Solitons Fractals, 115, 268-282 (2018) · Zbl 1416.34053
[43] Sowmiya, C.; Raja, R.; Cao, J.; Li, X.; Rajchakit, G., Discrete-time stochastic impulsive BAM neural networks with leakage and mixed time delays: an exponential stability problem, J. Franklin. Inst., 355, 10, 4404-4435 (2018) · Zbl 1390.93625
[44] Aouiti, C.; Bessifi, M., Finite-time and fixed-time synchronization of fuzzy clifford-valued Cohen-Grossberg neural networks with discontinuous activations and time-varying delays, J. Adapt. Control Signal Process., 35, 12, 2499-2520 (2021) · Zbl 07840964
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.