×

Sliding mode matrix-projective synchronization for fractional-order neural networks. (English) Zbl 1477.34013

Summary: This work generalizes the projection scaling factor to a general constant matrix and proposes the matrix-projection synchronization (MPS) for fractional-order neural networks (FNNs) based on sliding mode control firstly. This kind of scaling factor is far more complex than the constant scaling factor, and it is highly variable and difficult to predict in the process of realizing the synchronization for the driving and response systems, which can ensure high security and strong confidentiality. Then, the fractional-order integral sliding surface and sliding mode controller for FNNs are designed. Furthermore, the criterion for realizing MPS is proved, and the reachability and stability of the synchronization error system are analyzed, so that the global MPS is realized for FNNs. Finally, a numerical application is given to demonstrate the feasibility of theory analysis. MPS is more general, so it is reduced to antisynchronization, complete synchronization, projective synchronization (PS), and modified PS when selecting different projective matrices. This work will enrich the synchronization theory of FNNs and provide a feasible method to study the MPS of other fractional-order dynamical models.

MSC:

34A08 Fractional ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics

References:

[1] Anatoly, A. K., Theory and Applications of Fractional Differential Equations (2006), Netherlands: Elsevier, Netherlands · Zbl 1092.45003
[2] Aguila-Camacho, N.; Duarte-Mermoud, M. A.; Gallegos, J. A., Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation, 19, 9, 2951-2957 (2014) · Zbl 1510.34111 · doi:10.1016/j.cnsns.2014.01.022
[3] Wu, L.; Liu, S.; Yang, Y., Using the fractional order method to generalize strengthening buffer operator and weakening buffer operator, IEEE/CAA Journal of Automatica Sinica, 5, 6, 1074-1078 (2018) · doi:10.1109/jas.2016.7510214
[4] Chen, Y.; Wu, L. F.; Liu, L. Y.; Zhang, K., Fractional Hausdorff grey model and its properties, Chaos, Solitons & Fractals, 138 (2020) · Zbl 1490.62287 · doi:10.1016/j.chaos.2020.109915
[5] Liang, S.; Wu, R.; Chen, L., Comparison principles and stability of nonlinear fractional-order cellular neural networks with multiple time delays, Neurocomputing, 168, 618-625 (2015) · doi:10.1016/j.neucom.2015.05.063
[6] Zhang, S.; Yu, Y.; Wang, H., Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Analysis: Hybrid Systems, 16, 104-121 (2015) · Zbl 1325.34016 · doi:10.1016/j.nahs.2014.10.001
[7] Zhang, L.; Song, Q.; Zhao, Z., Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays, Applied Mathematics and Computation, 298, 296-309 (2017) · Zbl 1411.34024 · doi:10.1016/j.amc.2016.11.027
[8] Huang, L.-L.; Park, J. H.; Wu, G.-C.; Mo, Z.-W., Variable-order fractional discrete-time recurrent neural networks, Journal of Computational and Applied Mathematics, 370 (2020) · Zbl 1432.39012 · doi:10.1016/j.cam.2019.112633
[9] Huang, C.; Cao, J.; Xiao, M.; Alsaedi, A.; Hayat, T., Bifurcations in a delayed fractional complex-valued neural network, Applied Mathematics and Computation, 292, 210-227 (2017) · Zbl 1410.37074 · doi:10.1016/j.amc.2016.07.029
[10] Huang, X.; Zhao, Z.; Wang, Z.; Li, Y., Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing, 94, 13-21 (2012) · doi:10.1016/j.neucom.2012.01.011
[11] Li, H.-L.; Zhang, L.; Hu, C.; Jiang, H.; Cao, J., Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: direct quaternion approach, Applied Mathematics and Computation, 373 (2020) · Zbl 1433.34071 · doi:10.1016/j.amc.2019.125020
[12] He, J.; Chen, F.; Lei, T.; Bi, Q., Global adaptive matrix-projective synchronization of delayed fractional-order competitive neural network with different time scales, Neural Computing & Applications, 32, 16, 12813-12826 (2020) · doi:10.1007/s00521-020-04728-7
[13] Huang, X.; Fan, Y.; Jia, J.; Wang, Z.; Li, Y., Quasi‐synchronisation of fractional‐order memristor‐based neural networks with parameter mismatches, IET Control Theory & Applications, 11, 14, 2317-2327 (2017) · doi:10.1049/iet-cta.2017.0196
[14] He, J. M.; Chen, F. Q.; Bi, Q. S., Quasi-matrix and quasi-inverse-matrix projective synchronization for delayed and disturbed fractional order neural network, Complexity, 2019 (2019) · Zbl 1420.34084 · doi:10.1155/2019/4823709
[15] Wu, H. Q.; Wang, L. F.; Wang, Y.; Niu, P. F.; Fang, B. L., Global Mittag-Leffler projective synchronization for fractional-order neural networks: an LMI-based approach, Advances in Difference Equations, 132 (2016) · Zbl 1419.34043 · doi:10.1186/s13662-016-0857-8
[16] Yu, J.; Hu, C.; Jiang, H.; Fan, X., Projective synchronization for fractional neural networks, Neural Networks, 49, 87-95 (2014) · Zbl 1296.34133 · doi:10.1016/j.neunet.2013.10.002
[17] Yu, J.; Hu, C.; Jiang, H., Corrigendum to “Projective synchronization for fractional neural networks”, Neural Networks, 67, 152-154 (2015) · Zbl 1394.34103 · doi:10.1016/j.neunet.2015.02.007
[18] Zhang, W.; Sha, C.; Cao, J.; Wang, G.; Wang, Y., Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field, Applied Mathematics and Computation, 400 (2021) · Zbl 1508.93183 · doi:10.1016/j.amc.2021.126045
[19] Yang, S.; Hu, C.; Yu, J.; Jiang, H., Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order, Chaos, Solitons & Fractals, 147 (2021) · Zbl 1486.93019 · doi:10.1016/j.chaos.2021.110911
[20] Bao, H.-B.; Cao, J.-D., Projective synchronization of fractional-order memristor-based neural networks, Neural Networks, 63, 1-9 (2015) · Zbl 1323.93036 · doi:10.1016/j.neunet.2014.10.007
[21] Zhang, L.; Yang, Y.; Wang, F., Projective synchronization of fractional-order memristive neural networks with switching jumps mismatch, Physica A: Statistical Mechanics and Its Applications, 471, 402-415 (2017) · Zbl 1400.34129 · doi:10.1016/j.physa.2016.12.030
[22] Xu, Q.; Xu, X.; Zhuang, S.; Xiao, J.; Song, C.; Che, C., New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics, Applied Mathematics and Computation, 338, 552-566 (2018) · Zbl 1427.93114 · doi:10.1016/j.amc.2018.06.055
[23] Yang, S.; Yu, J.; Hu, C.; Jiang, H., Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks, Neural Networks, 104, 104-113 (2018) · Zbl 1441.93287 · doi:10.1016/j.neunet.2018.04.007
[24] Du, H., Modified function projective synchronization between two fractional-order complex dynamical networks with unknown parameters and unknown bounded external disturbances, Physica A: Statistical Mechanics and Its Applications, 526 (2019) · Zbl 07566441 · doi:10.1016/j.physa.2019.04.233
[25] Ding, Z.; Shen, Y., Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller, Neural Networks, 76, 97-105 (2016) · Zbl 1415.93074 · doi:10.1016/j.neunet.2016.01.006
[26] Wu, H.; Wang, L.; Niu, P.; Wang, Y., Global projective synchronization in finite time of nonidentical fractional-order neural networks based on sliding mode control strategy, Neurocomputing, 235, 264-273 (2017) · doi:10.1016/j.neucom.2017.01.022
[27] Song, S.; Song, X. N.; Balsera, I. T., Mixed H∞/passive projective synchronization for nonidentical uncertain fractional-order neural networks based on adaptive sliding mode control, Neural Processing Letters, 47, 443-462 (2018)
[28] Wu, X.; Bao, H.; Cao, J., Finite-time inter-layer projective synchronization of Caputo fractional-order two-layer networks by sliding mode control, Journal of the Franklin Institute, 358, 1, 1002-1020 (2021) · Zbl 1455.93179 · doi:10.1016/j.jfranklin.2020.10.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.