×

On a sum involving squarefull numbers. (English) Zbl 1508.11097

A positive integer \(n\) is square-full if for any prime divisor \(p\) of \(n\), square of \(p\) divides \(n\). Let \(f(n)\) be the characteristic function of the set of square-full integers, and \[ s_q(n)=\sum_{d|\gcd(n,q)}d\,f\left(\frac{q}{d}\right). \] In this paper, the author approximates the double sum \[ S(x,y)=\sum_{n\leq y}\sum_{q\leq x}s_q(n), \] for the real numbers \(x\) and \(y\) satisfying \(x^{4/3}\log x\ll y\ll x^{14/9}\log^{-4}x\). The proof runs over standard complex integration methods, based on Perron’s formula.

MSC:

11N37 Asymptotic results on arithmetic functions
11A25 Arithmetic functions; related numbers; inversion formulas

References:

[1] T. H. Chan and A. V. Kumchev, “On sums of Ramanujan sums”, Acta Arith. 152:1 (2012), 1-10. · Zbl 1294.11162 · doi:10.4064/aa152-1-1
[2] S. W. Graham and G. Kolesnik, van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series 126, Cambridge University Press, 1991. · Zbl 0713.11001 · doi:10.1017/CBO9780511661976
[3] A. Ivić, The Riemann zeta-function: Theory and applications, Wiley, NY, 1985. · Zbl 0556.10026
[4] I. Kiuchi, “The fourth power moment of the double zeta-function”, Publ. Inst. Math. (Beograd) (N.S.) 100(114) (2016), 229-241. · Zbl 1432.11119 · doi:10.2298/PIM1614229K
[5] I. Kiuchi, “On sums of sums involving squarefull numbers”, Acta Arith. 200:2 (2021), 197-211. · Zbl 1497.11239 · doi:10.4064/aa201027-8-2
[6] I. Kiuchi and M. Minamide, “Mean square formula for the double zeta-function”, Funct. Approx. Comment. Math. 55:1 (2016), 31-43. · Zbl 1407.11107 · doi:10.7169/facm/2016.55.1.3
[7] I. Kiuchi, M. Minamide, and Y. Tanigawa, “On a sum involving the Möbius function”, Acta Arith. 169:2 (2015), 149-168. · Zbl 1332.11088 · doi:10.4064/aa169-2-3
[8] P. Kühn and N. Robles, “Explicit formulas of a generalized Ramanujan sum”, Int. J. Number Theory 12:2 (2016), 383-408. · Zbl 1338.11091 · doi:10.1142/S1793042116500238
[9] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory, \(I\): Classical theory, Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, 2007. · Zbl 1142.11001
[10] N. Robles, Twisted second moments and explicit formulae of the Riemann zeta-function, Ph.D. thesis, Universität Zürich, 2015.
[11] N. Robles and A. Roy, “Moments of averages of generalized Ramanujan sums”, Monatsh. Math. 182:2 (2017), 433-461. · Zbl 1367.11071 · doi:10.1007/s00605-016-0907-z
[12] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Graduate Studies in Mathematics 163, American Mathematical Society, Providence, RI, 2008. · doi:10.1090/gsm/163
[13] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., Oxford University Press, 1986. · Zbl 0601.10026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.