×

Geometric bounds for the magnetic Neumann eigenvalues in the plane. (English. French summary) Zbl 1531.35193

The authors derive upper and lower bounds for the eigenvalues of the magnetic Laplacian on a bounded domain in \(\mathbb{R}^2\). A constant magnetic field and magnetic Neumann boundary conditions are considered. For the ground state, the authors prove a universal upper bound that is strict and given by the intensity of the magnetic field. A new lower bound for a smooth domain is given as well. Semiclassical estimates on eigenvalue averages which are asymptotically sharp are also obtained. For variable magnetic fields, upper bounds for the ground state eigenvalue are given on a Riemann surface. Finally, several examples are provided, such as the case of domains with small width.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series (1964), For Sale by the Superintendent of Documents, U.S. Government Printing Office: For Sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. · Zbl 0171.38503
[2] Arrieta, J. M.; Lamberti, P. D., Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differ. Equ., 7, 4222-4266 (2017) · Zbl 1379.35105
[3] Bauman, P.; Phillips, D.; Tang, Q., Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. Arch. Ration. Mech. Anal., 1, 1-43 (1998) · Zbl 0922.35157
[4] Berezin, F. A., Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR, Ser. Mat., 1134-1167 (1972) · Zbl 0247.47019
[5] Bonnaillie, V., On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners. Asymptot. Anal., 3-4, 215-258 (2005) · Zbl 1067.35054
[6] Bonnaillie-Noël, V., Harmonic oscillators with Neumann condition of the half-line. Commun. Pure Appl. Anal., 6, 2221-2237 (2012) · Zbl 1272.34118
[7] Bonnaillie-Noël, V.; Fournais, S.; Kachmar, A.; Raymond, N., Discrete Spectrum of the Magnetic Laplacian on Perturbed Half-Planes (2022)
[8] Chen, R.; Li, P., On Poincaré type inequalities. Trans. Am. Math. Soc., 4, 1561-1585 (1997) · Zbl 0954.58022
[9] Colbois, B.; El Soufi, A.; Ilias, S.; Savo, A., Eigenvalues upper bounds for the magnetic Schrödinger operator. Commun. Anal. Geom., 4, 779-814 (2022) · Zbl 1518.58005
[10] Colbois, B.; Savo, A., Lower bounds for the first eigenvalue of the magnetic Laplacian. J. Funct. Anal., 10, 2818-2845 (2018) · Zbl 1386.58013
[11] Colbois, B.; Savo, A., Upper bounds for the ground state energy of the Laplacian with zero magnetic field on planar domains. Ann. Glob. Anal. Geom., 1, 1-18 (2021) · Zbl 1470.35148
[12] Courant, R.; Hilbert, D., Methods of Mathematical Physics. Vol. I (1953), Interscience Publishers, Inc.: Interscience Publishers, Inc. New York, N.Y. · Zbl 0053.02805
[13] Egidi, M.; Liu, S.; Münch, F.; Peyerimhoff, N., Ricci curvature and eigenvalue estimates for the magnetic Laplacian on manifolds. Commun. Anal. Geom., 5, 1127-1156 (2021) · Zbl 1491.53049
[14] Ekholm, T.; Kovařík, H.; Portmann, F., Estimates for the lowest eigenvalue of magnetic Laplacians. J. Math. Anal. Appl., 1, 330-346 (2016) · Zbl 1386.35295
[15] Erdős, L., Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. Partial Differ. Equ., 3, 283-292 (1996) · Zbl 0846.35094
[16] Erdős, L.; Loss, M.; Vougalter, V., Diamagnetic behavior of sums of Dirichlet eigenvalues. Ann. Inst. Fourier (Grenoble), 3, 891-907 (2000) · Zbl 0957.35104
[17] Exner, P.; Lotoreichik, V.; Pérez-Obiol, A., On the bound states of magnetic Laplacians on wedges. Rep. Math. Phys., 2, 161-185 (2018) · Zbl 1441.35181
[18] Fournais, S.; Helffer, B., Strong diamagnetism for general domains and application, 2389-2400 (2007), Festival Yves Colin de Verdière · Zbl 1133.35073
[19] Fournais, S.; Helffer, B., Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and Their Applications (2010), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 1256.35001
[20] Fournais, S.; Helffer, B., Inequalities for the lowest magnetic Neumann eigenvalue. Lett. Math. Phys., 7, 1683-1700 (2019) · Zbl 1415.35213
[21] Fournais, S.; Sundqvist, M. P., Lack of diamagnetism and the Little-Parks effect. Commun. Math. Phys., 1, 191-224 (2015) · Zbl 1315.82027
[22] Frank, R. L.; Laptev, A.; Molchanov, S., Eigenvalue estimates for magnetic Schrödinger operators in domains. Proc. Am. Math. Soc., 12, 4245-4255 (2008) · Zbl 1186.35119
[23] Golomb, S. W., Replicating figures in the plane. Math. Gaz., 366, 403-412 (1964) · Zbl 0125.38504
[24] Gray, A., Tubes. Progress in Mathematics (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel, With a preface by Vicente Miquel
[25] Harrell, E. M.; Stubbe, J., On sums of graph eigenvalues. Linear Algebra Appl., 168-186 (2014) · Zbl 1305.05127
[26] Harrell, E. M.; Hermi, L., On Riesz means of eigenvalues. Commun. Partial Differ. Equ., 9, 1521-1543 (2011) · Zbl 1237.35123
[27] Helffer, B.; Kachmar, A., Thin domain limit and counterexamples to strong diamagnetism. Rev. Math. Phys., 2 (2021) · Zbl 1473.35523
[28] Kröger, P., Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space. J. Funct. Anal., 2, 353-357 (1992) · Zbl 0777.35044
[29] Lange, C.; Liu, S.; Peyerimhoff, N.; Post, O., Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians. Calc. Var. Partial Differ. Equ., 4, 4165-4196 (2015) · Zbl 1330.05103
[30] Laugesen, R. S.; Liang, J.; Roy, A., Sums of magnetic eigenvalues are maximal on rotationally symmetric domains. Ann. Henri Poincaré, 4, 731-750 (2012) · Zbl 1242.81082
[31] Laugesen, R. S.; Siudeja, B. A., Magnetic spectral bounds on starlike plane domains. ESAIM Control Optim. Calc. Var., 3, 670-689 (2015) · Zbl 1319.35130
[32] Li, P.; Yau, S. T., On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys., 3, 309-318 (1983) · Zbl 0554.35029
[33] Payne, L. E.; Weinberger, H. F., An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal., 286-292 (1960) · Zbl 0099.08402
[34] Pólya, G., On the eigenvalues of vibrating membranes. Proc. Lond. Math. Soc., 11, 419-433 (1961) · Zbl 0107.41805
[35] Raymond, N., Bound States of the Magnetic Schrödinger Operator. EMS Tracts in Mathematics (2017), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1370.35004
[36] Rubinstein, J.; Schatzman, M., Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum. Arch. Ration. Mech. Anal., 4, 271-308 (2001) · Zbl 0997.49003
[37] Saint-James, D., Etude du champ critique \(H_{c_3}\) dans une géométrie cylindrique. Phys. Lett., 1, 13-15 (1965)
[38] Son, S. S., Spectral problems on triangles and disks: Extremizers and ground states (2014), ProQuest LLC: ProQuest LLC Ann Arbor, MI, Thesis (Ph.D.)-University of Illinois at Urbana-Champaign
[39] Talenti, G., Elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 4, 697-718 (1976) · Zbl 0341.35031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.