×

Equidistribution of \(\alpha p^{\theta}\) with a Chebotarev condition and applications to extremal primes. (English) Zbl 1539.11084

There is a long history of equidistribution results on \(p^{\theta}\) modulo 1, where \(0<\theta<1\) is fixed and \(p\) runs over the primes. The paper under review studies equidistribution of \(\alpha p^{\theta}\), where \(\alpha>0\) and \(p\) is restricted to primes satisfying \(\sigma_p\in C\). Here, \(C\) is a union of conjugacy classes in \(G=\)Gal\((L|\mathbb{Q})\), \(L\) being a Galois extension of \(\mathbb{Q}\), and \(\sigma_p\) is the Frobenius automorphism associated with any prime in \(L\) lying above \(p\). More precisely, a conditional result is obtained for the quantity \[ \sharp\{x<p\le 2p : \delta_1\le \{\alpha p^{\theta}\}< \delta_2, \ \sigma_p\in C\} - (\delta_2-\delta_1)\cdot \frac{\sharp C}{\sharp G} \cdot \pi(x) \] with \(0\le \delta_1<\delta_2\le 1\), which depends on the parameters \(\alpha,\theta,\delta_1,\delta_2\) and \(\Delta\), assuming that the Dedekind zeta function \(\zeta_L(s)\) of \(L\) has no zeros in the half plane \(\operatorname{Re}(s)>1-\Delta\). (In particular, one may take \(\Delta=1/2\) under the Grand Riemann Hypothesis.) To this end, the authors adapt ideas of A. Balog [Arch. Math. 40, 434–440 (1983; Zbl 0517.10038)], J. C. Lagarias and A. M. Odlyzko [in: Algebr. Number Fields, Proc. Symp. London math. Soc., Univ. Durham 1975, 409–464 (1977; Zbl 0362.12011)]. As a consequence, taking a cyclotomic extension \(L\), a bound for \[ \sharp\{x<p\le 2x : \delta_1\le \{\alpha p^{\theta}\}<\delta_2, \ p\equiv a\bmod{q}\} \] for relatively prime \(a\) and \(q\) follows under a quasi-Riemann hypothesis for Dirichlet \(L\)-functions. As an application of their above result for general Galois extensions \(L\), the authors prove an asymptotic result on the density of primes \(p\) for which the trace of Frobenius \(a_E(p)\), \(E\) being an elliptic curve without complex multiplication over \(\mathbb{Q}\), satisfies a congruence condition \[ a_p(E)\equiv [2\sqrt{p}] \bmod{l}, \] where \(l\) is a prime restricted to a certain interval. (In this case, they take \(L\) to be the \(l\)-torsion field of \(E\).) From this, taking \(l\) as large as possible, they derive a bound for the number of primes \(p\) for which \(a_p(E)\) has the extreme value \(a_p(E)=[2\sqrt{p}]\), namely \[ \sharp \{x<p\le 2x : p\nmid N_E, \ a_p(E)=[2\sqrt{p}]\} \ll_E x^{19/18-2\Delta/9}(\log x)^{-1/9}, \] \(N_E\) being the conductor of \(E\).

MSC:

11G05 Elliptic curves over global fields
11N05 Distribution of primes

References:

[1] Y.Akbal and A. M.Güloglu, Piatetski‐Shapiro meets Chebotarev, Acta Arith.167 (2015), no. 4, 301-325. · Zbl 1317.11081
[2] S.Baier, On the \(p^\lambda\) problem, Acta Arith.113 (2004), no. 1, 77-101. · Zbl 1122.11045
[3] R. C.Baker and G.Harman, On the distribution of \(\alpha p^k\) modulo one, Mathematika38 (1991), no. 1, 170-184. · Zbl 0751.11037
[4] R. C.Baker and G.Kolesnik, On the distribution of \(p^\alpha\) modulo one, J. reine angew. Math.356 (1985), 174-193. · Zbl 0546.10027
[5] A.Balog, On the fractional part of \(p^{\theta }\), Arch. Math. (Basel)40 (1983), no. 5, 434-440. · Zbl 0517.10038
[6] A.Balog, On the distribution of \(p^\theta \,{\rm mod}\, 1\), Acta Math. Hungar.45 (1985), no. 1‐2, 179-199. · Zbl 0571.10038
[7] W. D.Banks, A. M.Güloglu, and A. M.Yeager, Carmichael meets Chebotarev, Canad. Math. Bull.56 (2013), no. 4, 695-708. · Zbl 1370.11108
[8] Y.Cai, On the distribution of \(\sqrt p\) modulo one involving primes of special type, Studia Sci. Math. Hungar.50 (2013), no. 4, 470-490. · Zbl 1313.11118
[9] C.David, A.Gafni, A.Malik, N.Prabhu, and C. L.Turnage‐Butterbaugh, Extremal primes for elliptic curves without complex multiplication, Proc. Amer. Math. Soc.148 (2020), no. 3, 929-943. · Zbl 1478.11083
[10] J.Friedlander and H.Iwaniec, The polynomial \(X^2+Y^4\) captures its primes, Ann. of Math. (2)148 (1998), no. 3, 945-1040. · Zbl 0926.11068
[11] A.Fujii, Some problems of Diophantine approximation in the theory of the Riemann zeta function. III, Comment. Math. Univ. St. Paul.42 (1993), no. 2, 161-187. · Zbl 0805.11058
[12] W.Fulton and J.Harris, Representation theory, Grad. Texts Math., vol. 129, Springer, New York, NY, 1991. A first course, Readings in Mathematics. · Zbl 0744.22001
[13] A.Gafni, J.Thorner, and P.‐J.Wong, Almost all primes satisfy the Atkin‐Serre conjecture and are not extremal, Res. Number Theory7 (2021), no. 2, 31. · Zbl 1482.11064
[14] L.Giberson and K.James, An average asymptotic for the number of extremal primes of elliptic curves, Acta Arith.183 (2018), no. 2, 145-165. · Zbl 1473.11122
[15] G.Harman, On the distribution of \(\sqrt{p}\) modulo one, Mathematika30 (1983), no. 1, 104-116. · Zbl 0504.10019
[16] D. R.Heath‐Brown, Primes represented by \(x^3+2y^3\), Acta Math.186 (2001), no. 1, 1-84. · Zbl 1007.11055
[17] E.Hlawka, Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunktion zusammenhängen, Österreich. Akad. Wiss. Math.‐Naturwiss. Kl. S.‐B. II184 (1975), no. 8‐10, 459-471. · Zbl 0354.10031
[18] K.James and P.Pollack, Extremal primes for elliptic curves with complex multiplication, J. Number Theory172 (2017), 383-391. · Zbl 1419.11091
[19] K.James, B.Tran, M.‐T.Trinh, P.Wertheimer, and D.Zantout, Extremal primes for elliptic curves, J. Number Theory164 (2016), 282-298. · Zbl 1416.11081
[20] J. C.Lagarias and A. M.Odlyzko, Effective versions of the Chebotarev density theorem. In Algebraic number fields: L‐functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), 1977, pp. 409-464. · Zbl 0362.12011
[21] A.Malik and A.Roy, On the distribution of zeros of derivatives of the Riemann ξ‐function, Forum Math.32 (2020), no. 1, 1-22. · Zbl 1472.11235
[22] K.Matomäki, A Bombieri‐Vinogradov type exponential sum result with applications, J. Number Theory129 (2009), no. 9, 2214-2225. · Zbl 1179.11025
[23] M. R.Murty, V. K.Murty, and N.Saradha, Modular forms and the Chebotarev density theorem, Amer. J. Math.110 (1988), no. 2, 253-281. · Zbl 0644.10018
[24] M. R.Murty and K.Srinivas, On the uniform distribution of certain sequences, Ramanujan J.7 (2003), no. 1‐3, 185-192. · Zbl 1077.11055
[25] J.Newton and J. A.Thorne, Symmetric power functoriality for holomorphic modular forms II, Publ. Math. Inst. Hautes Études Sci.134 (2021), no. 1, 117-152. · Zbl 1503.11086
[26] H.Rademacher, Collected papers of Hans Rademacher, vol. I, MIT Press, Cambridge, MA-London, 1974. · Zbl 0311.01023
[27] Z.Rudnick, P.Sarnak, and A.Zaharescu, The distribution of spacings between the fractional parts of \(n^2\alpha \), Invent. Math.145 (2001), no. 1, 37-57. · Zbl 1006.11041
[28] Z.Rudnick and A.Zaharescu, The distribution of spacings between fractional parts of lacunary sequences, Forum Math.14 (2002), no. 5, 691-712. · Zbl 1168.11317
[29] J.‐P.Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.15 (1972), no. 4, 259-331. · Zbl 0235.14012
[30] S. Y.Shi and Z. X.Wu, Distribution of \(\alpha p^2\) modulo one for primes p of a special type, Chinese Ann. Math. Ser. A34 (2013), no. 4, 479-486. · Zbl 1299.11049
[31] E. C.Titchmarsh, The theory of the Riemann zeta‐function, 2nd edn, The Clarendon Press, Oxford University Press, New York, NY, 1986. (Edited and with a preface by D. R. Heath‐Brown.) · Zbl 0601.10026
[32] H.Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann.77 (1916), no. 3, 313-352. · JFM 46.0278.06
[33] A.Zaharescu, Small values of \(n^2\alpha \pmod 1\), Invent. Math.121 (1995), no. 2, 379-388. · Zbl 0827.11040
[34] D.Zywina, Bounds for the Lang‐Trotter conjectures. In, SCHOLAR—a scientific celebration highlighting open lines of arithmetic research, Contemp. Math., vol. 655, Amer. Math. Soc., Providence, R.I., 2015, pp. 235-256. · Zbl 1394.11050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.