×

Class numbers and self-conjugate 7-cores. (English) Zbl 1459.05012

Summary: We investigate \(\operatorname{sc}_7(n)\), the number of self-conjugate 7-core partitions of size \(n\). It turns out that \(\operatorname{sc}_7(n) = 0\) for \(n \equiv 7\pmod 8\). For \(n \equiv 1, 3, 5\pmod 8\), with \(n \not\equiv 5\pmod 7\), we find that \(\operatorname{sc}_7(n)\) is essentially a Hurwitz class number. Using recent work of L. Gao and H. Qin [Commun. Algebra 47, No. 11, 4605–4640 (2019; Zbl 1457.11025)], we show that \[\operatorname{sc}_7(n) = 2^{- \varepsilon ( n ) - 1} \cdot H(- D_n),\] where \(- D_n : = - 4^{\varepsilon ( n )}(7 n + 14)\) and \(\varepsilon(n) : = \frac{ 1}{ 2} \cdot(1 + ( - 1 )^{\frac{ n - 1}{ 2}})\). This fact implies several corollaries which are of interest. For example, if \(- D_n\) is a fundamental discriminant and \(p \notin \{2, 7 \}\) is a prime with \(\operatorname{ord}_p(- D_n) \leq 1\), then for every positive integer \(k\) we have \[\operatorname{sc}_7 ( ( n + 2 ) p^{2 k} - 2 ) = \operatorname{sc}_7(n) \cdot \left( 1 + \frac{ p^{k + 1} - p}{ p - 1} - \frac{ p^k - 1}{ p - 1} . \left( \frac{ - D_n}{ p} \right) \right),\eqno{(2)}\] where \((\frac{ - D_n}{ p})\) is the Legendre symbol.

MSC:

05A17 Combinatorial aspects of partitions of integers
05E10 Combinatorial aspects of representation theory
11P81 Elementary theory of partitions
11P83 Partitions; congruences and congruential restrictions

Citations:

Zbl 1457.11025

References:

[1] Alpoge, L., Self-conjugate core partitions and modular forms, J. Number Theory, 140, 60-92 (2014) · Zbl 1296.11132
[2] Cohen, H., Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann., 217, 271-285 (1975) · Zbl 0311.10030
[3] Cox, D., Primes of the Form \(x^2 + n y^2 (1989)\), Wiley: Wiley New York · Zbl 0701.11001
[4] Gao, L.; Qin, H., Ternary quadratic forms and the class numbers of imaginary quadratic fields, Commun. Algebra, 47, 11, 4605-4640 (2019), (online) · Zbl 1457.11025
[5] Fong, P.; Srinivasan, B., The blocks of finite general linear groups and unitary groups, Invent. Math., 69, 109-153 (1982) · Zbl 0507.20007
[6] Garvan, F.; Kim, D.; Stanton, D., Cranks and t-cores, Invent. Math., 101, 1-17 (1990) · Zbl 0721.11039
[7] Granville, A.; Ono, K., Defect zero p-blocks for finite simple groups, Trans. Am. Math. Soc., 348, 331-347 (1996) · Zbl 0855.20007
[8] Hanusa, C.; Nath, R., The number of self-conjugate core partitions, J. Number Theory, 133, 751-768 (2013) · Zbl 1256.05013
[9] Hirschhorn, M.; Sellers, J., Some amazing facts about 4-cores, J. Number Theory, 60, 51-69 (1996) · Zbl 0864.11050
[10] James, G.; Kerber, A., The Representation Theory of the Symmetric Group (1979), Addison-Wesley: Addison-Wesley Reading
[11] Ono, K., The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 1119.11026
[12] Ono, K.; Sze, L., 4-core partitions and class numbers, Acta Arith., 80, 249-272 (1997) · Zbl 0868.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.