×

Codimension-3 bifurcation in the p53 regulatory network model. (English) Zbl 1472.34090

In this paper, the authors study the dynamical behaviors of the p53-Mdm2 model, and show that the model can undergo the saddle-node bifurcation, Hopf bifurcation, codimension-2 Bogdanov-Takens bifurcation, and codimension-3 Bogdanov-Takens bifurcation by rigorous mathematical analysis, and also explain the medical implications of these resluts.
Reviewer: Xiong Li (Beijing)

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
92D20 Protein sequences, DNA sequences

Software:

Singularity
Full Text: DOI

References:

[1] Abdelrazec, A., Bélair, J., Shan, C. & Zhu, H. [2016] “ Modeling the spread and control of dengue with limited public health resources,” Math. Biosci.271, 136-145. · Zbl 1364.92036
[2] Aguirre, P., Flores, J. & González-Olivares, E. [2014] “ Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response,” Nonlin. Anal.: Real World Appl.16, 235-249. · Zbl 1298.34078
[3] Algaba, A., Freire, E. & Gamero, E. [2002] “ Computing simplest normal forms for the Takens-Bogdanov singularity,” Qual. Th. Dyn. Syst.3, 377-435. · Zbl 1050.34052
[4] Algaba, A., Chung, K., Qin, B. & Rodríguez-Luis, A. [2020] “ Computation of all the coefficients for the global connections in the Z_2-symmetric Takens-Bogdanov normal forms,” Commun. Nonlin. Sci. Numer. Simul.81, 105012. · Zbl 1453.37045
[5] Andronov, A., Leontovich, E., Gordon, I. & Maier, A. [1971] Theory of Bifurcations of Dynamic Systems on a Plane in the Case of Zero Eigenvalues (Israel Program for Scientific Translations, Jerusalem).
[6] Bar-Or, R., Maya, R., Segel, L., Alon, U., Levine, A. & Oren, M. [2000] “ Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study,” Proc. Natl. Acad. Sci. USA97, 11250-11255.
[7] Bogdanov, R. [1975] “ Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues,” Funct. Anal. Appl.9, 144-145. · Zbl 0447.58009
[8] Cai, L., Chen, G. & Xiao, D. [2013] “ Multiparametric bifurcations of an epidemiological model with strong Allee effect,” J. Math. Biol.67, 185-215. · Zbl 1283.34049
[9] Chickarmane, V., Ray, A., Sauro, H. & Nadim, A. [2007] “ A model for p53 dynamics triggered by DNA damage,” SIAM J. Appl. Dyn. Syst.6, 61-78. · Zbl 1210.37067
[10] Choi, M., Shi, J., Jung, S., Chen, X. & Cho, K. [2012] “ Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage,” Sci. Sign.5, 1-14.
[11] Ciliberto, A., Novak, B. & Tyson, J. [2005] “ Steady states and oscillations in the p53/Mdm2 network,” Cell Cycle4, 488-493.
[12] Dai, Y. & Zhang, X. [2019] “ MicroRNA delivery with bioreducible polyethylenimine as a non-viral vector for breast cancer gene therapy,” Macromol. Biosci.19, 1-7.
[13] Dumortier, F., Roussarie, R. & Sotomayor, J. [1987] “ Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3,” Ergod. Th. Dyn. Syst.7, 375-413. · Zbl 0608.58034
[14] Dumortier, F., Roussarie, R., Sotomayor, J. & Zoladek, H. [1991] Bifurcations of Planar Vector Fields, Nilpotent Singularities and Abelian Integrals, , Vol. 1480 (Springer-Verlag, Berlin). · Zbl 0755.58002
[15] Fan, Q., Wu, G. & Liu, Z. [2014] “ Dynamics of posttranslational modifications of p53,” Comput. Math. Methods Med.2014, 245610. · Zbl 1307.92070
[16] Gazor, M. & Moazeni, M. [2015] “ Parametric normal forms for Bogdanov-Takens singularity; the generalized saddle-node case,” Discr. Contin. Dyn. Syst.35, 205-224. · Zbl 1308.34046
[17] Gazor, M. & Sadri, N. [2019] “ Bifurcation controller designs for the generalized cusp plants of Bogdanov-Takens singularity with an application to ship control,” SIAM J. Control Optim.57, 2122-2151. · Zbl 1423.34080
[18] Gazor, M. & Kazemi, M. [2020] “ Singularity: A maple library for local zero bifurcation control of scalar smooth maps,” J. Comput. Nonlin. Dyn.15, 1-9.
[19] Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G. & Alon, U. [2006] “ Oscillations and variability in the p53 system,” Mol. Syst. Biol.2, 1-13.
[20] Huang, J., Ruan, S. & Song, J. [2014] “ Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response,” J. Diff. Eqs.257, 1721-1752. · Zbl 1326.34082
[21] Kohn, K. & Pommier, Y. [2005] “ Molecular interaction map of the p53 and Mdm2 logic elements, which control the off-on switch of p53 in response to DNA damage,” Biochem. Biophys. Res. Commun.331, 816-827.
[22] Kozłowska, E. & Puszynski, K. [2016] “ Application of bifurcation theory and siRNA-based control signal to restore the proper response of cancer cells to DNA damage,” J. Th. Biol.408, 213-221. · Zbl 1352.92055
[23] Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A., Elowitz, M. & Alon, U. [2004] “ Dynamics of the p53-Mdm2 feedback loop in individual cells,” Nat. Genet.36, 147-150.
[24] Liu, B., Yan, S. & Wang, Q. [2011] “ Intrinsic noise and Hill dynamics in the p53 system,” J. Th. Biol.269, 104-108. · Zbl 1307.92081
[25] Ma, L., Wagner, J., Rice, J., Hu, W., Levine, A. & Stolovitzky, G. [2005] “ A plausible model for the digital response of p53 to DNA damage,” Proc. Natl. Acad. Sci. USA102, 14266-14271.
[26] Momand, J., Wu, H. & Dasgupta, G. [2000] “ Mdm2-master regulator of the p53 tumor suppressor protein,” Gene242, 15-29.
[27] Murray-Zmijewski, F., Slee, E. & Lu, X. [2008] “ A complex barcode underlies the heterogeneous response of p53 to stress,” Nat. Rev. Mol. Cell Biol.9, 702-712.
[28] Murakami, Y. & Takada, S. [2012] “ Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53,” Biophysics8, 41-50.
[29] Ouattara, D., Abou-Jaoudé, W. & Kaufman, M. [2010] “ From structure to dynamics: Frequency tuning in the p53-Mdm2 network. II. Differential and stochastic approaches,” J. Th. Biol.264, 1177-1189. · Zbl 1406.92250
[30] Oren, M. [2003] “ Decision making by p53: Life, death and cancer,” Cell Death Diff.10, 431-442.
[31] Peng, G., Jiang, Y. & Li, C. [2009] “ Bifurcations of a Holling-type II predator-prey system with constant rate harvesting,” Int. J. Bifurcation and Chaos19, 2499-2514. · Zbl 1175.34062
[32] Perko, L. [1996] Differential Equations and Dynamical Systems (Springer, NY). · Zbl 0854.34001
[33] Purvis, J., Karhohs, K., Mock, C., Batchelor, E., Loewer, A. & Lahav, G. [2012] “ P53 dynamics control cell fate,” Science336, 1440-1444.
[34] Qin, B., Chung, K., Algaba, A. & Rodríguez-Luis, A. [2020] “ High-order analysis of global bifurcations in a codimension-three Takens-Bogdanov singularity in reversible systems,” Int. J. Bifurcation and Chaos30, 2050017-1-18. · Zbl 1436.34035
[35] Reiser, M., Neumann, I., Schmiegel, W., Wu, P. & Lau, J. [2000] “ Induction of cell proliferation arrest and apoptosis in hepatoma cells through adenoviral-mediated transfer of p53 gene,” J. Hepatol.32, 771-782.
[36] Ruan, S. & Wang, W. [2003] “ Dynamical behavior of an epidemic model with a nonlinear incidence rate,” J. Diff. Eqs.188, 135-163. · Zbl 1028.34046
[37] Shan, C. & Zhu, H. [2014] “ Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds,” J. Diff. Eqs.257, 1662-1688. · Zbl 1300.34113
[38] Shan, C., Yi, Y. & Zhu, H. [2016] “ Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources,” J. Diff. Eqs.260, 4339-4365. · Zbl 1339.34057
[39] Sun, T., Chen, C., Wu, Y., Zhang, S., Cui, J. & Shen, P. [2009] “ Modeling the role of p53 pulses in DNA damage induced cell death decision,” BMC Bioinformatics10, 1-12.
[40] Sun, T., Yuan, R., Xu, W., Zhu, F. & Shen, P. [2010] “ Exploring a minimal two component p53 model,” Phys. Biol.7, 036008.
[41] Tyson, J. [2006] “ Another turn for p53,” Mol. Syst. Biol.2, 1-3.
[42] Van Leeuwen, I., Sanders, I., Staples, O., Lain, S. & Munro, A. [2010] “ Numerical and experimental analysis of the p53-Mdm2 regulatory pathway,” Digital Ecosystems. OPAALS 2010, , Vol. 67 (Springer, Berlin, Heidelberg), pp. 266-284.
[43] Vousden, K. & Lane, D. [2007] “ P53 in health and disease,” Nat. Rev. Mol. Cell Biol.8, 275-283.
[44] Wang, W. & Ruan, S. [2004] “ Bifurcations in an epidemic model with constant removal rate of the infectives,” J. Math. Anal. Appl.291, 775-793. · Zbl 1054.34071
[45] Wang, W. [2006] “ Backward bifurcation of an epidemic model with treatment,” Math. Biosci.201, 58-71. · Zbl 1093.92054
[46] Wang, W., Li, Y. & Hethcote, H. [2006] “ Bifurcations in a host-parasite model with nonlinear incidence,” Int. J. Bifurcation and Chaos16, 3291-3307. · Zbl 1140.34361
[47] Wee, K., Surana, U. & Aguda, B. [2009] “ Oscillations of the p53-Akt network: Implications on cell survival and death,” PLoS One4, e4407.
[48] Whibley, C., Pharoah, P. & Hollstein, M. [2009] “ P53 polymorphisms: Cancer implications,” Nat. Rev. Cancer9, 95-107.
[49] Wu, D. & Yang, W. [2018] “ Analysis on bifurcation solutions of an atherosclerosis model,” Nonlin. Anal.: Real World Appl.39, 396-410. · Zbl 1379.35338
[50] Xiao, D. & Ruan, S. [2001] “ Codimension two bifurcations in a predator-prey system with group defense,” Int. J. Bifurcation and Chaos11, 2123-2131. · Zbl 1091.92504
[51] Xiao, D. & Jennings, L. [2005] “ Bifurcations of a ratiodependent predator-prey system with constant rate harvesting,” SIAM J. Appl. Math.65, 737-753. · Zbl 1094.34024
[52] Yu, P. & Leung, A. [2003] “ The simplest normal form of Hopf bifurcation,” Nonlinearity16, 277-300. · Zbl 1086.34033
[53] Yu, P. & Zhang, W. [2019] “ Complex dynamics in a unified SIR and HIV disease model: A bifurcation theory approach,” J. Nonlin. Sci.3, 1-54.
[54] Zazoua, A., Zhang, Y. & Wang, W. [2020] “ Bifurcation analysis of mathematical model of prostate cancer with immunotherapy,” Int. J. Bifurcation and Chaos30, 2030018-1-16. · Zbl 1448.34104
[55] Zhang, X., Liu, F., Cheng, Z. & Wang, W. [2009] “ Cell fate decision mediated by p53 pulses,” Proc. Natl. Acad. Sci. USA106, 12245-12250.
[56] Zhang, X., Liu, F. & Wang, W. [2011] “ Two-phase dynamics of p53 in the DNA damage response,” Proc. Natl. Acad. Sci. USA108, 8990-8995.
[57] Zhang, T. & Wang, W. [2012] “ Hopf bifurcation and bistability of a nutrient-phytoplankton-zooplankton model,” Appl. Math. Model.36, 6225-6235. · Zbl 1349.34129
[58] Zhang, L., Cheng, Y. & Liew, K. [2013] “ A mathematical analysis of DNA damage induced G2 phase transition,” Appl. Math. Comput.225, 765-774. · Zbl 1334.92321
[59] Zhang, L. & Liew, K. [2014] “ A regulatory network of G2/M phase transition for DNA damage,” Appl. Mech. Mater.444-445, 1182-1186.
[60] Zhang, X., Shan, C., Jin, Z. & Zhu, H. [2019] “ Complex dynamics of epidemic models on adaptive networks,” J. Diff. Eqs.266, 803-832. · Zbl 1410.35259
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.