×

Synchronization transitions caused by time-varying coupling functions. (English) Zbl 1462.34061

Summary: Interacting dynamical systems are widespread in nature. The influence that one such system exerts on another is described by a coupling function; and the coupling functions extracted from the time-series of interacting dynamical systems are often found to be time-varying. Although much effort has been devoted to the analysis of coupling functions, the influence of time-variability on the associated dynamics remains largely unexplored. Motivated especially by coupling functions in biology, including the cardiorespiratory and neural delta-alpha coupling functions, this paper offers a contribution to the understanding of effects due to time-varying interactions. Through both numerics and mathematically rigorous theoretical consideration, we show that for time-variable coupling functions with time-independent net coupling strength, transitions into and out of phase- synchronization can occur, even though the frozen coupling functions determine phase-synchronization solely by virtue of their net coupling strength. Thus the information about interactions provided by the shape of coupling functions plays a greater role in determining behaviour when these coupling functions are time-variable.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations

References:

[1] Zhang G, Ma J, Alsaedi A, Ahmad B, Alzahrani F. 2018 Dynamical behavior and application in Josephson junction coupled by memristor. Appl. Math. Comput. 321, 290-299. (doi:10.1016/j.amc.2017.10.054) · Zbl 1426.94176 · doi:10.1016/j.amc.2017.10.054
[2] Wiesenfeld K, Colet P, Strogatz SH. 1996 Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett. 76, 404-407. (doi:10.1103/PhysRevLett.76.404) · doi:10.1103/PhysRevLett.76.404
[3] Cessac B. 2010 A view of neural networks as dynamical systems. Intern. J. Bifurc. Chaos 20, 1585-1629. (doi:10.1142/S0218127410026721) · Zbl 1193.37131 · doi:10.1142/S0218127410026721
[4] Ma J, Mi L, Zhou P, Xu Y, Hayat T. 2017 Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321-328. (doi:10.1016/j.amc.2017.03.002) · Zbl 1411.92049 · doi:10.1016/j.amc.2017.03.002
[5] Sun XJ, Perc M, Kurths J. 2017 Effect of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Chaos 27, 053113. (doi:10.1063/1.4983838) · doi:10.1063/1.4983838
[6] Schäfer C, Rosenblum MG, Kurths J, Abel HH. 1998 Heartbeat synchronised with ventilation. Nature 392, 239-240. (doi:10.1038/32567) · doi:10.1038/32567
[7] Stefanovska A, Haken H, McClintock PVE, Hožič M, Bajrović F, Ribarič S. 2000 Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85, 4831-4834. (doi:10.1103/PhysRevLett.85.4831) · doi:10.1103/PhysRevLett.85.4831
[8] Iatsenko D, Bernjak A, Stankovski T, Shiogai Y, Owen-Lynch PJ, Clarkson PBM, McClintock PVE, Stefanovska A. 2013 Evolution of cardio-respiratory interactions with age. Phil. Trans. R. Soc. A 371, 20110622. (doi:10.1098/rsta.2011.0622) · Zbl 1353.92034 · doi:10.1098/rsta.2011.0622
[9] Musizza B, Stefanovska A, McClintock PVE, Paluš M, Petrovčič J, Ribarič S, Bajrović FF. 2007 Interactions between cardiac, respiratory, and EEG-δ oscillations in rats during anæsthesia. J. Physiol. (London) 580, 315-326. (doi:10.1113/jphysiol.2006.126748) · doi:10.1113/jphysiol.2006.126748
[10] Faes L, Nollo G, Jurysta F, Marinazzo D. 2014 Information dynamics of brain-heart physiological networks during sleep. New J. Phys. 16, 105005. (doi:10.1088/1367-2630/16/10/105005) · doi:10.1088/1367-2630/16/10/105005
[11] Stankovski T, Petkoski S, Raeder J, Smith AF, McClintock PVE, Stefanovska A. 2016 Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane. Phil. Trans. R. Soc. A 374, 20150186. (doi:10.1098/rsta.2015.0186) · doi:10.1098/rsta.2015.0186
[12] Morelli MS, Greco A, Valenza G, Giannoni A, Emdin M, Scilingo EP, Vanello N. 2018 Analysis of generic coupling between EEG activity and PETCO2 in free breathing and breath-hold tasks using Maximal Information Coefficient (MIC). Sci. Rep. 8, 4492. (doi:10.1038/s41598-018-22573-6) · doi:10.1038/s41598-018-22573-6
[13] Ranganathan S, Spaiser V, Mann RP, Sumpter DJT. 2014 Bayesian dynamical systems modelling in the social sciences. PLoS ONE 9, e86468. (doi:10.1371/journal.pone.0086468) · doi:10.1371/journal.pone.0086468
[14] Blomqvist BRH, Mann RP, Sumpter DJT. 2018 Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators. PLoS ONE 13, e0196355. (doi:10.1371/journal.pone.0196355) · doi:10.1371/journal.pone.0196355
[15] Stankovski T, McClintock PVE, Stefanovska A. 2014 Coupling functions enable secure communications. Phys. Rev. X 4, 011026. (doi:10.1103/PhysRevX.4.011026) · doi:10.1103/PhysRevX.4.011026
[16] Nadzinski G, Dobrevski M, Anderson C, McClintock PVE, Stefanovska A, Stankovski M, Stankovski T. 2018 Experimental realization of the coupling function secure communications protocol and analysis of its noise robustness. IEEE Trans. Info. Forens. Secur. 13, 2591-2601. (doi:10.1109/TIFS.2018.2825147) · doi:10.1109/TIFS.2018.2825147
[17] Kiss IZ, Rusin CG, Kori H, Hudson JL. 2007 Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316, 1886-1889. (doi:10.1126/science.1140858) · Zbl 1226.93068 · doi:10.1126/science.1140858
[18] Blaha KA, Pikovsky A, Rosenblum M, Clark MT, Rusin CG, Hudson JL. 2011 Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators. Phys. Rev. E 84, 046201. (doi:10.1103/PhysRevE.84.046201) · doi:10.1103/PhysRevE.84.046201
[19] Kori H, Kuramoto Y, Jain S, Kiss IZ, Hudson JL. 2014 Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Phys. Rev. E 89, 062906. (doi:10.1103/PhysRevE.89.062906) · doi:10.1103/PhysRevE.89.062906
[20] Stefanovska A, Luchinsky DG, McClintock PVE. 2001 Modelling couplings among the oscillators of the cardiovascular system. Physiol. Meas. 22, 551-564. (doi:10.1088/0967-3334/22/3/312) · doi:10.1088/0967-3334/22/3/312
[21] Petkoski S, Stefanovska A. 2012 Kuramoto model with time-varying parameters. Phys. Rev. E 86, 046212. (doi:10.1103/PhysRevE.86.046212) · doi:10.1103/PhysRevE.86.046212
[22] Suprunenko YF, Clemson PT, Stefanovska A. 2013 Chronotaxic systems: a new class of self-sustained nonautonomous oscillators. Phys. Rev. Lett. 111, 024101. (doi:10.1103/PhysRevLett.111.024101) · doi:10.1103/PhysRevLett.111.024101
[23] Stankovski T. 2017 Time-varying coupling functions: dynamical inference and cause of synchronization transitions. Phys. Rev. E 95, 022206. (doi:10.1103/PhysRevE.95.022206) · doi:10.1103/PhysRevE.95.022206
[24] Lucas M, Newman J, Stefanovska A. 2018 Stabilization of dynamics of oscillatory systems by nonautonomous perturbation. Phys. Rev. E 97, 042209. (doi:10.1103/PhysRevE.97.042209) · doi:10.1103/PhysRevE.97.042209
[25] Kloeden PE, Rasmussen M. 2011 Nonautonomous dynamical systems. New York, NY: AMS Mathematical Surveys and Monographs. · Zbl 1244.37001
[26] Kralemann B, Frühwirth M, Pikovsky A, Rosenblum M, Kenner T, Schaefer J, Moser M. 2013 In vivo cardiac phase response curve elucidates human respiratory heart rate variability. Nat. Commun. 4, 2418. (doi:10.1038/ncomms3418) · doi:10.1038/ncomms3418
[27] Stankovski T, Duggento A, McClintock PVE, Stefanovska A. 2012 Inference of time-evolving coupled dynamical systems in the presence of noise. Phys. Rev. Lett. 109, 024101. (doi:10.1103/PhysRevLett.109.024101) · doi:10.1103/PhysRevLett.109.024101
[28] Stankovski T, Ticcinelli V, McClintock PVE, Stefanovska A. 2017 Neural cross-frequency coupling functions. Front. Syst. Neurosci. 11, 33. (doi:10.3389/fnsys.2017.00033) · Zbl 1452.34045 · doi:10.3389/fnsys.2017.00033
[29] Ticcinelli V, Stankovski T, Iatsenko D, Bernjak A, Bradbury A, Gallagher A, Clarkson PBM, McClintock PVE, Stefanovska A. 2017 Coherence and coupling functions reveal microvascular impairment in treated hypertension. Front. Physiol. 8, 749. (doi:10.3389/fphys.2017.00749) · doi:10.3389/fphys.2017.00749
[30] Maia DMN, Macau EEN, Pereira T. 2016 Persistence of network synchronization under nonidentical coupling functions. SIAM J. Appl. Dyn. Syst. 15, 1563-1580. (doi:10.1137/15M1049786) · Zbl 1369.34071 · doi:10.1137/15M1049786
[31] Komarov M, Pikovsky A. 2013 Multiplicity of singular synchronous states in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 111, 204101. (doi:10.1103/PhysRevLett.111.204101) · doi:10.1103/PhysRevLett.111.204101
[32] Chishti S, Ramaswamy R. 2018 Design strategies for generalized synchronization. Phys. Rev. E 98, 032217. (doi:10.1103/PhysRevE.98.032217) · doi:10.1103/PhysRevE.98.032217
[33] Stankovski T, Pereira T, McClintock PVE, Stefanovska A. 2017 Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89, 045001. (doi:10.1103/RevModPhys.89.045001) · doi:10.1103/RevModPhys.89.045001
[34] Granger CW. 1969 Investigating causal relations by econometric models and cross-spectral methods. Econ: J. Econ. Soc. 37, 424-438. (doi:10.2307/1912791) · Zbl 1366.91115 · doi:10.2307/1912791
[35] Schreiber T. 2000 Measuring information transfer. Phys. Rev. Lett. 85, 461-464. (doi:10.1103/PhysRevLett.85.461) · doi:10.1103/PhysRevLett.85.461
[36] Paluš M, Stefanovska A. 2003 Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys. Rev. E 67, 055201. (doi:10.1103/PhysRevE.67.055201) · doi:10.1103/PhysRevE.67.055201
[37] Staniek M, Lehnertz K. 2008 Symbolic transfer entropy. Phys. Rev. Lett. 100, 158101. (doi:10.1103/PhysRevLett.100.158101) · Zbl 1141.37368 · doi:10.1103/PhysRevLett.100.158101
[38] Smelyanskiy VN, Luchinsky DG, Stefanovska A, McClintock PVE. 2005 Inference of a nonlinear stochastic model of the cardiorespiratory interaction. Phys. Rev. Lett. 94, 098101. (doi:10.1103/PhysRevLett.94.098101) · doi:10.1103/PhysRevLett.94.098101
[39] Stankovski T, Duggento A, McClintock PVE, Stefanovska A. 2014 A tutorial on time-evolving dynamical Bayesian inference. Eur. Phys. J. Special Topics 223, 2685-2703. (doi:10.1140/epjst/e2014-02286-7) · doi:10.1140/epjst/e2014-02286-7
[40] Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. 2008 Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E 77, 066205. (doi:10.1103/PhysRevE.77.066205) · doi:10.1103/PhysRevE.77.066205
[41] Stankovski T, Ticcinelli V, McClintock PVE, Stefanovska A. 2015 Coupling functions in networks of oscillators. New J. Phys. 17, 035002. (doi:10.1088/1367-2630/17/3/035002) · Zbl 1452.34045 · doi:10.1088/1367-2630/17/3/035002
[42] Pikovsky A, Rosenblum M, Kurths J. 2001 Synchronization: a universal concept in nonlinear sciences. Cambridge, UK: Cambridge University Press. · Zbl 0993.37002
[43] Kuramoto Y. 1984 Chemical oscillations, waves, and turbulence. Berlin, Germany: Springer. · Zbl 0558.76051
[44] Kurebayashi W, Shirasaka S, Nakao H. 2013 Phase reduction method for strongly perturbed limit cycle oscillators. Phys. Rev. Lett. 111, 214101. (doi:10.1103/PhysRevLett.111.214101) · Zbl 1387.37045 · doi:10.1103/PhysRevLett.111.214101
[45] Nakao H. 2015 Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57, 1-27. (doi:10.1080/00107514.2015.1094987) · doi:10.1080/00107514.2015.1094987
[46] Park Y, Ermentrout B. 2016 Weakly coupled oscillators in a slowly varying world. J. Comput. Neurosci. 40, 269-281. (doi:10.1007/s10827-016-0596-6) · Zbl 1382.93017 · doi:10.1007/s10827-016-0596-6
[47] Winfree AT. 1967 Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15-42. (doi:10.1016/0022-5193(67)90051-3) · doi:10.1016/0022-5193(67)90051-3
[48] Winfree AT. 1980 The geometry of biological time. New York, NY: Springer. · Zbl 0464.92001
[49] Rudin W. 1966 Real and complex analysis. New York, NY: McGraw-Hill, Inc. · Zbl 0148.02904
[50] Skardal PS, Taylor D, Restrepo JG. 2014 Complex macroscopic behavior in systems of phase oscillators with adaptive coupling. Physica D 267, 27-35. (doi:10.1016/j.physd.2013.01.012) · Zbl 1292.34071 · doi:10.1016/j.physd.2013.01.012
[51] Kenwright DA, Bahraminasab A, Stefanovska A, McClintock PVE. 2008 The effect of low-frequency oscillations on cardio-respiratory synchronization. Eur. Phys. J. B. 65, 425-433. (doi:10.1140/epjb/e2008-00199-4) · doi:10.1140/epjb/e2008-00199-4
[52] Sanders JA, Verhulst F, Murdock J. 2010 Averaging methods in nonlinear dynamical systems. Applied Mathematical Sciences, No. 59. New York, NY: Springer. · Zbl 1128.34001
[53] Jensen RV. 2002 Synchronization of driven nonlinear oscillators. Am. J. Phys. 70, 607-619. (doi:10.1119/1.1467909) · doi:10.1119/1.1467909
[54] Lucas M, Fanelli D, Stefanovska A. 2019 Nonautonomous driving induces stability in network of identical oscillators. Phys. Rev. E 99, 012309. (doi:10.1103/PhysRevE.99.012309) · doi:10.1103/PhysRevE.99.012309
[55] Pereira T, Eroglu D, Bagci GB, Tirnakli U, Jensen HJ. 2013 Connectivity-driven coherence in complex networks. Phys. Rev. Lett. 110, 234103. (doi:10.1103/PhysRevLett.110.234103) · doi:10.1103/PhysRevLett.110.234103
[56] Poignard C, Pade JP, Pereira T. 2019 The effects of structural perturbations on the synchronizability of diffusive networks. J. Nonlinear Sci. 29, 1919-1942. (doi:10.1007/s00332-019-09534-7) · Zbl 1423.90036 · doi:10.1007/s00332-019-09534-7
[57] Belykh IV, Belykh VN, Hasler M. 2004 Blinking model and synchronization in small-world networks with a time-varying coupling. Physica D 195, 188-206. (doi:10.1016/j.physd.2004.03.013) · Zbl 1098.82621 · doi:10.1016/j.physd.2004.03.013
[58] Faes L, Nollo G, Porta A. 2011 Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding technique. Phys. Rev. E 83, 051112. (doi:10.1103/PhysRevE.83.051112) · doi:10.1103/PhysRevE.83.051112
[59] Barrett AB, Barnett L. 2013 Granger causality is designed to measure effect, not mechanism. Front. Neuroinf. 7, 6. (doi:10.3389/fninf.2013.00006) · doi:10.3389/fninf.2013.00006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.