×

Identities for the multiple zeta (star) values. (English) Zbl 1432.11125

Summary: In this paper, we prove some new identities for multiple zeta values and multiple zeta star values of arbitrary depth by using the methods of integral computations of logarithm function and iterated integral representations of series. By applying the formulas obtained, we prove that the multiple zeta star values whose indices are the sequences \((\bar{1},\{1\}_m,\bar{1})\) and \((2,\{1\}_m,\bar{1})\) can be expressed polynomially in terms of zeta values, polylogarithms and \(\ln (2)\). We also evaluate several restricted sums involving multiple zeta values.

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
40B05 Multiple sequences and series
33E20 Other functions defined by series and integrals

References:

[1] Bailey, D.H., Borwein, J.M., Girgensohn, R.: Experimental evaluation of Euler sums. Exp. Math. 3(1), 17-30 (1994) · Zbl 0810.11076 · doi:10.1080/10586458.1994.10504573
[2] Borwein, J.M., Bradley, D.M., Broadhurst, D.J.: Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k. Electron. J. Comb. 4(2), 1-21 (1997) · Zbl 0884.40004
[3] Borwein, D., Borwein, J.M., Girgensohn, R.: Explicit evaluation of Euler sums. Proc. Edinb. Math. 38, 277-294 (1995) · Zbl 0819.40003 · doi:10.1017/S0013091500019088
[4] Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisonĕk, Petr: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907-941 (2001) · Zbl 1002.11093 · doi:10.1090/S0002-9947-00-02616-7
[5] Bowman, D., Bradley, D.M.: Resolution of some open problems concerning multiple zeta evaluations of arbitrary depth. Compos. Math. 139, 85-100 (2003) · Zbl 1035.11037 · doi:10.1023/B:COMP.0000005036.52387.da
[6] Borwein, J.M., Girgensohn, R.: Evaluation of triple Euler sums. Electron. J. Comb. 3, 2-7 (1996) · Zbl 0884.40005
[7] Chen, K., Chung, C., Eie, M.: Sum formulas and duality theorems of multiple zeta values. J. Number Theory 158, 33-53 (2016) · Zbl 1381.40011 · doi:10.1016/j.jnt.2015.06.014
[8] Chung, C., Eie, M., Lee, T.: Another expression of the restricted sum formula of multiple zeta values. J. Number Theory 166, 452-472 (2016) · Zbl 1412.11102 · doi:10.1016/j.jnt.2016.02.014
[9] Comtet, L.: Advanced Combinatorics. D Reidel Publishing Company, Boston (1974) · Zbl 0283.05001 · doi:10.1007/978-94-010-2196-8
[10] Eie, M., Liaw, W.C., Ong, Y.L.: A restricted sum formula among multiple zeta values. J. Number Theory 129, 908-921 (2009) · Zbl 1183.11053 · doi:10.1016/j.jnt.2008.07.012
[11] Eie, M., Lee, T.: Identities among restricted sums of multiple zeta values. J. Number Theory 164, 208-222 (2016) · Zbl 1412.11103 · doi:10.1016/j.jnt.2015.11.016
[12] Flajolet, P., Salvy, B.: Euler sums and contour integral representations. Exp. Math. 7(1), 15-35 (1998) · Zbl 0920.11061 · doi:10.1080/10586458.1998.10504356
[13] Hoffman, M.E.: Multiple harmonic series. Pac. J. Math. 152, 275-290 (1992) · Zbl 0763.11037 · doi:10.2140/pjm.1992.152.275
[14] Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra 194(2), 477-495 (1997) · Zbl 0881.11067 · doi:10.1006/jabr.1997.7127
[15] Hoffman, M.E.: Multiple zeta values: from Euler to the present. In: MAA Sectional Meeting, Annapolis, Maryland, 10 November 2007. http://www.usna.edu/Users/math/meh · Zbl 1221.11184
[16] Kaneko, M., Ohno, Y.: On a kind of duality of multiple zeta-star values. Int. J. Number Theory 8(8), 1927-1932 (2010) · Zbl 1221.11184 · doi:10.1142/S179304211000385X
[17] Li, Z.: Another proof of Zagier’s evaluation formula of the multiple zeta values \[\zeta (2,\ldots, 2, 3, 2,\ldots,2)\] ζ(2,…,2,3,2,…,2). Math. Res. Lett. 20(5), 947-950 (2013) · Zbl 1294.11146 · doi:10.4310/MRL.2013.v20.n5.a10
[18] Muneta, S.: Algebraic setup of non-strict multiple zeta values. Acta Arith. 136(1), 7-18 (2009) · Zbl 1242.11063 · doi:10.4064/aa136-1-2
[19] Markett, C.: Triple sums and the Riemann zeta function. J. Number Theory 48(2), 113-132 (1994) · Zbl 0810.11047 · doi:10.1006/jnth.1994.1058
[20] Ohno, Y.: A generalization of the duality and sum formulas on the multiple zeta values. J. Number Theory 74(1), 39-43 (1999) · Zbl 0920.11063 · doi:10.1006/jnth.1998.2314
[21] Pilehrood, K.H., Pilehrood, T.H., Tauraso, R.: New properties of multiple harmonic sums modulo \[p\] p and \[p\] p-analogues of Leshchiner’s series. Trans. Am. Math. Soc. 366(6), 3131-3159 (2013) · Zbl 1308.11018 · doi:10.1090/S0002-9947-2013-05980-6
[22] Pilehrood, K.H., Pilehrood, T.H., Zhao, J.: On q-analogs of some families of multiple harmonic sums and multiple zeta star value identities. Commun. Number Theory Phys. 10(4), 805-832 (2016) · Zbl 1404.42058 · doi:10.4310/CNTP.2016.v10.n4.a4
[23] Xu, C.: Integrals of logarithmic functions and alternating multiple zeta values. arXiv:1701.00385 [math.NT] · Zbl 1505.11011
[24] Xu, C.: Multiple zeta values and Euler sums. J. Number Theory 177, 443-478 (2017) · Zbl 1406.11089 · doi:10.1016/j.jnt.2017.01.018
[25] Yamazaki, C.: On the duality for multiple zeta-star values of height one. Kyushu J. Math. 64(1), 145-152 (2009) · Zbl 1236.11075 · doi:10.2206/kyushujm.64.145
[26] Zagier, D.: Values of zeta functions and their applications. In: First European Congress of Mathematics, Volume II, Birkhauser, Boston, vol. 120, pp. 497-512 (1994) · Zbl 0822.11001
[27] Zagier, D.: Evaluation of the multiple zeta values \[\zeta (2,\ldots,2, 3, 2,\ldots,2)\] ζ(2,…,2,3,2,…,2). Ann. Math. 2(2), 977-1000 (2012) · Zbl 1268.11121 · doi:10.4007/annals.2012.175.2.11
[28] Zlobin, S.A.: Special values of generalized polylogarithms. J. Math. Sci. (N. Y.) 182(4), 484-504 (2012) · Zbl 1273.33005 · doi:10.1007/s10958-012-0752-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.