×

Bounds for double zeta-functions. (English) Zbl 1170.11317

Summary: In this paper we shall derive the order of magnitude for the double zeta-function of Euler-Zagier type in the region \(0\leq\operatorname{Re} s_j<1\) \((j=1,2)\). First we prepare the Euler-Maclaurin summation formula in a suitable form for our purpose, and then we apply the theory of double exponential sums of van der Corput’s type.

MSC:

11L07 Estimates on exponential sums
11M41 Other Dirichlet series and zeta functions

References:

[1] S. Akiyama, S. Egami and Y. Tanigawa, An analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), 107-116. Zbl0972.11085 MR1831604 · Zbl 0972.11085 · doi:10.4064/aa98-2-1
[2] S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327-351. Zbl1002.11069 MR1891413 · Zbl 1002.11069 · doi:10.1023/A:1013981102941
[3] F. V. Atkinson, The mean-value of the Riemann zeta-function, Acta Math. 81 (1949), 353-376. Zbl0036.18603 MR31963 · Zbl 0036.18603 · doi:10.1007/BF02395027
[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, “Higher Transcendental Functions I”, McGraw-Hill, New-York, 1953. Zbl0052.29502 · Zbl 0052.29502
[5] I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series and Products”, Academic Press, Inc., 1979. Zbl0918.65002 · Zbl 0918.65002
[6] S. W. Graham and G. Kolesnik, “Van der Corput’s methods of exponential sums”, London Math. Society, LNS Vol. 126, Cambridge University Press 1991. Zbl0713.11001 MR1145488 · Zbl 0713.11001
[7] J. L. H. Hafner, New omega results in a weighted divisor problem, J. Number Theory 28 (1988), 240-257. Zbl0635.10037 MR932373 · Zbl 0635.10037 · doi:10.1016/0022-314X(88)90040-6
[8] M. N. Huxley, “Area, Lattice Points and Exponential Sums”, Oxford Science Publications, Clarendon Press, Oxford, 1996. Zbl0861.11002 MR1420620 · Zbl 0861.11002
[9] M. N. Huxley, Integer points, exponential sums and the Riemann zeta function, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory”, Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 275-290. Zbl1030.11053 MR1956254 · Zbl 1030.11053
[10] H. Ishikawa and K. Matsumoto, On the estimation of the order of Euler-Zagier multiple zeta-functions, Illinois J. Math. 47 (2003), 1151-1166. Zbl1094.11033 MR2036995 · Zbl 1094.11033
[11] A. Ivić, “The Riemann Zeta-Function”, John Wiley & Sons, 1985. Zbl0556.10026 MR792089 · Zbl 0556.10026
[12] E. Krätzel, “Lattice Points”, Kluwer Academic Publishers, 1988. Zbl0675.10031 MR998378 · Zbl 0675.10031
[13] K. Matsumoto, On the analytic continuation of various multiple zeta-functions, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory”, Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 417-440. Zbl1031.11051 MR1956262 · Zbl 1031.11051
[14] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), 39-43. Zbl0920.11063 MR1670544 · Zbl 0920.11063 · doi:10.1006/jnth.1998.2314
[15] E. C. Titchmarsh, On Epstein’s zeta-function, Proc. London Math. Soc. (2) 36 (1934), 485-500. Zbl0008.30101 · Zbl 0008.30101 · doi:10.1112/plms/s2-36.1.485
[16] E. C. Titchmarsh, “The Theory of the Riemann Zeta-Function” (Revised by D. R. Heath-Brown), Clarendon press Oxford, 1986. Zbl0601.10026 MR882550 · Zbl 0601.10026
[17] J. Q. Zhao, Analytic continuation of multiple zeta function, Proc. Amer. Math. Soc. 128 (2000), 1275-1283. Zbl0949.11042 MR1670846 · Zbl 0949.11042 · doi:10.1090/S0002-9939-99-05398-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.