×

Asymptotically \(\mathcal{J}\)-lacunary statistical equivalent of order \(\alpha\) for sequences of sets. (English) Zbl 1412.40023

Summary: This paper presents the following definition which is a natural combination of the definition for asymptotically equivalent of order \(\alpha\), where \(0 < \alpha \leqslant 1\), \(\mathcal{J}\)-statistically limit, and \(\mathcal{J}\)-lacunary statistical convergence for sequences of sets. Let \((X, \rho)\) be a metric space and \(\theta\) be a lacunary sequence. For any non-empty closed subsets \(A_k, B_k \subseteq X\) such that \(d(x,A_k) > 0\) and \(d(x, B_k) > 0\) for each \(x \in X\), we say that the sequences \(\{A_k\}\) and \(\{B_k\}\) are Wijsman asymptotically \(\mathcal{J}\)-lacunary statistical equivalent of order \(\alpha\) to multiple \(L\), where \(0 < \alpha \leqslant 1\), provided that for each \(\varepsilon > 0\) and each \(x \in X\), \[\{r\in \mathbb{N}: \frac{1}{h^\alpha_r}|\{k\in I_r: |d(x;A_k,B_k)-L|\geqslant\varepsilon\}|\geqslant\delta\}\in \mathcal{J},\] (denoted by \(\{A_k\}\overset{s\frac{1}{\theta}(\mathcal{J}_W)^\alpha}{\sim}\{B_k\}\)) and simply asymptotically \(\mathcal{J}\)-lacunary statistical equivalent of order \(\alpha\) if \(L = 1\). In addition, we shall also present some inclusion theorems. The study leaves some interesting open problems.

MSC:

40A35 Ideal and statistical convergence
46A45 Sequence spaces (including Köthe sequence spaces)
Full Text: DOI

References:

[1] Baronti, M.; P. L. Papini, Convergence of sequences of sets, Methods of functional analysis in approximation theory, Bombay, (1985), Internat. Schriftenreihe Numer. Math., Birkhäuser , Basel, 76, 133-155 (1986) · Zbl 0606.54006
[2] Çolak, R., Statistical convergence of order \(\alpha \), Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India, 121-129 (2010)
[3] Çolak, R.; Bektaş, C. A., \( \lambda \)-statistical convergence of order \(\alpha \), Acta Math. Sci. Ser. B Engl. Ed., 31, 953-959 (2011) · Zbl 1240.40016 · doi:10.1016/S0252-9602(11)60288-9
[4] Das, P.; Savaş, E., On I-statistical and I-lacunary statistical convergence of order \(\alpha \), Bull. Iranian Math. Soc., 40, 459-472 (2014) · Zbl 1317.40001
[5] Das, P.; Savaş, E.; Ghosal, S. K., On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24, 1509-1514 (2011) · Zbl 1223.40004 · doi:10.1016/j.aml.2011.03.036
[6] Fast, H., Sur la convergence statistique, (French) Colloquium Math., 2, 241-244 (1951) · Zbl 0044.33605
[7] Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985) · Zbl 0588.40001 · doi:10.1524/anly.1985.5.4.301
[8] Fridy, J. A.; Orhan, C., Lacunary statistical convergence, Pacific J. Math., 160, 43-51 (1993) · Zbl 0794.60012
[9] Kişi, Ö.; Savaş, E.; Nuray, F., On I-asymptotically lacunary statistical equivalence of sequences of sets
[10] Kostyrko, P.; Šalát, T.; Wilczyński, W., I-convergence, Real Anal. Exchange, 26, 669-685 (200001) · Zbl 1021.40001
[11] Li, J.-L., Asymptotic equivalence of sequences and summability, Internat. J. Math. Math. Sci., 20, 749-757 (1997) · Zbl 0895.40001 · doi:10.1155/S0161171297001038
[12] Marouf, M. S., Asymptotic equivalence and summability, Internat. J. Math. Math. Sci., 16, 755-762 (1993) · Zbl 0788.40001 · doi:10.1155/S0161171293000948
[13] Nuray, F.; Rhoades, B. E., Statistical convergence of sequences of sets, Fasc. Math., 49, 87-99 (2012) · Zbl 1287.40004
[14] Patterson, R. F., On asymptotically statistical equivalent sequences, Demonstratio Math., 36, 149-153 (2003) · Zbl 1045.40003
[15] Savaş, E., Double almost lacunary statistical convergence of order \(\alpha \), Adv. Difference Equ., 2013, 1-10 (2013) · Zbl 1375.40009 · doi:10.1186/1687-1847-2013-254
[16] Savaş, E., On I-asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ., 2013, 1-7 (2013) · Zbl 1380.40003 · doi:10.1186/1687-1847-2013-111
[17] Savaş, E., On asymptotically I-lacunary statistical equivalent sequences of order \(\alpha \), International Conference on Pure Mathematics-Applied Mathematics, Venice, Italy, 15-17 (2014)
[18] Savaş, E., On I-lacunary statistical convergence of order \(\alpha\) for sequences of sets, Filomat, 29, 1223-1229 (2015) · Zbl 1453.40007 · doi:10.2298/FIL1506223S
[19] Savaş, E.; Das, P., A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826-830 (2011) · Zbl 1220.40004 · doi:10.1016/j.aml.2010.12.022
[20] Savaş, E.; Gumuş, H., A generalization on I-asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., 2013, 1-9 (2013) · Zbl 1292.40004 · doi:10.1186/1029-242X-2013-270
[21] Ulusu, U.; Nuray, F., Lacunary statistical convergence of sequences of sets, Prog. Appl. Math., 4, 99-109 (2012) · doi:10.3968/j.pam.1925252820120402.2264
[22] Ulusu, U.; Nuray, F., On asymptotically lacunary statistical equivalent set sequences, J. Math., 2013, 1-5 (2013) · Zbl 1285.40002 · doi:10.1155/2013/310438
[23] Ulusu, U.; Savaş, E., An extension of asymptotically lacunary statistical equivalence set sequences, J. Inequal. Appl., 2014, 1-8 (2014) · Zbl 1327.40006 · doi:10.1186/1029-242X-2014-134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.