×

Transcendental \(p\)-adic continued fractions. (English) Zbl 1388.11040

This paper considers the arithmetic nature of Ruban \(p\)-adic continued fractions [A. A. Ruban, Sib. Mat. Zh. 11, 222–227 (1970; Zbl 0188.10704)]. By work of L. Wang [Sci. Sin., Ser. A 28, 1009–1017, 1018–1023 (1985; Zbl 0628.10036)] and V. Laohakosol [J. Aust. Math. Soc., Ser. A 39, 300–305 (1985; Zbl 0582.10021)] it is known that rational numbers have finite or ultimate periodic \(p\)-adic continued fraction expansions. Here, the author proves that an analogue to Lagrange’s theorem is not true in general, i.e., that quadratic irrationalities have ultimately periodic expansions only under additional hypotheses. Moreover, he shows that that a non-ultimately periodic \(p\)-adic continued fraction has either a transcendental or a quadratic irrational value if it has finite periodic strings of rapidly increasing length. It seems to be difficult to distinguish these two possibilities; for two very special cases, transcendence is proven.
Besides of classical formulae for continued fractions, the main tool of proof is a \(p\)-adic version of Roth’s theorem [M. Hindry and J. H. Silverman, Diophantine geometry. An introduction. New York, NY: Springer (2000; Zbl 0948.11023)].

MSC:

11J81 Transcendence (general theory)
11J70 Continued fractions and generalizations
11J61 Approximation in non-Archimedean valuations

References:

[1] Baker, A.: Continued fractions of transcendental numbers. Mathematika 9, 1-8 (1962) · Zbl 0105.03903 · doi:10.1112/S002557930000303X
[2] de Weger, B.M.M.: Periodicity of \[p\] p-adic continued fractions. Elem. Math. 43(4), 112-116 (1988) · Zbl 0701.11066
[3] Deze, M., Wang, L.X.: \[p\] p-Adic continued fractions (III). Acta Math. Sin. (N.S.) 2(4), 299-308 (1986) · Zbl 0628.10037 · doi:10.1007/BF02564931
[4] Laohakosol, V.: A characterization of rational numbers by \[p\] p-adic Ruban continued fractions. J. Aust. Math. Soc. Ser. A 39(3), 300-305 (1985) · Zbl 0582.10021 · doi:10.1017/S1446788700026070
[5] LeVeque, W.J.: Topics in Number Theory, vol. 1,2. Addison-Wesley Publishing Co., Inc., Reading Mass. (1956) · Zbl 0070.03803
[6] Mahler, K.: On a geometrical representation of \[p\] p-adic numbers. Ann. Math. 2(41), 8-56 (1940) · JFM 66.0186.01 · doi:10.2307/1968818
[7] Maillet, E.: Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions. Gauthier-Villars, Paris (1906) · JFM 37.0237.02
[8] Ruban, A.A.: Certain metric properties of \[p\] p-adic numbers. Sib. Math. Zh. 11, 222-227 (1970). (Russian) · Zbl 0188.10704
[9] Schneider, T.: Über \[p\] p-adische Kettenbrüche, Symposia Mathematica, vol. IV (INDAM, Rome, 1968/69), pp. 181-189. Academic Press, London
[10] Silverman, J.H., Hindry, M.: Diophantine Geometry, Graduate Texts in Mathematics, vol. 201. Springer, New York (2000) · Zbl 0948.11023
[11] Tilborghs, F.: Periodic p-adic continued fractions. Simon Stevin 64(3-4), 383-390 (1990) · Zbl 0723.11031
[12] Ubolsri, P., Laohakosol, \[V.: p\] p-Adic continued fractions of Liouville type. Proc. Am. Math. Soc. 101(3), 403-410 (1987) · Zbl 0636.10027
[13] van der Poorten, A.J.: Schneider’s continued fraction, Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991). Lecture Notes in Pure and Applied Mathematics, vol. 147, pp. 271-281. Dekker, New York (1993) · Zbl 0790.11050
[14] Wang, L.X.: \[p\] p-Adic continued fractions (I). Sci. Sin. Ser. A 28(10), 1009-1017 (1985) · Zbl 0628.10036
[15] Wang, L.X.: \[p\] p-Adic continued fractions (II). Sci. Sin. Ser. A 28(10), 1018-1023 (1985) · Zbl 0628.10036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.