×

Polynomial cycles in certain rings of rationals. (English) Zbl 1071.11017

A finite sequence \((x_0; x_1; \ldots; x_n)\) in an integral domain \(R\) is called a polynomial cycle of length \(n\) if \(x_0; x_1; \ldots; x_{n-1}\) are distinct; \(x_n = x_0\); and there exists a polynomial \(f \in R [X]\) such that \(f(x_i) = x_{i+1}\) for \(i = 0; 1; \ldots; n-1\). For a square-free positive integer \(N\); let \(C(N)\) be the set of all lengths of polynomial cycles in \(\mathbb Z [1/N]\). The author explicitly determines \(C(N)\) if \(N\) is odd; \(N = 2\) or \(N = 2p\) for an odd prime \(p\). The investigations are based on the methods and the general finiteness results derived in [F. Halter-Koch and W. Narkiewicz, “Scarcity of finite polynomial orbits”, Publ. Math., Debrecen 56, 405-414 (2000; Zbl 0961.11005)].

MSC:

11C08 Polynomials in number theory
11D99 Diophantine equations
11R09 Polynomials (irreducibility, etc.)

Citations:

Zbl 0961.11005

Software:

KANT/KASH; PARI/GP

References:

[1] Alex, L.J., Diophantine equations related to finite groups. Comm. Algebra4 (1976), 77-100. · Zbl 0324.20010
[2] Alex, L.J., On the diophantine equation 1 + 2α = 3b5c + 2d3e5f. Math. Comp.44 (1985), 267-278. · Zbl 0556.10008
[3] Alex, L.J., Foster, L.L., On the diophantine equation 1 + pa =2b + 2cpd. Rocky Mount. J. Math.15 (1985), 739-761. · Zbl 0589.10017
[4] Alex, L.J., Foster, L.L., On the diophantine equation 1 + x + y = z. Rocky Mount. J. Math.22 (1992), 11-62. · Zbl 0760.11013
[5] Batut, C., Bernardi, D., Cohen, H., Olivier, M., User’s Guide to PARI-GP, Bordeaux1994.
[6] Cassels, J.W.S., On the equation ax - by = 1. Amer. J. Math.75 (1953), 159-162. · Zbl 0050.03703
[7] Cohn, J.H.E., The Diophantine equation x2 + 3 = yn. Glasgow Math. J.35 (1993), 203-206. · Zbl 0779.11015
[8] Daberkow, M., Fieker, C., Kluners, J., Pohst, M., Roegner, K., Schornig, M., Wildanger, K., Kant V4. J. Symbolic Comput. 24 (1997), 267-283. · Zbl 0886.11070
[9] Halter-Koch, F., Narkiewicz, W., Polynomial cycles in finitely generated domains. Monatsh. Math.119 (1995), 275-279. · Zbl 0840.13003
[10] Halter-Koch, F., Narkiewicz, W., Polynomial cycles and dynamical units. Proc. Conf. Analytic and Elementary Number Theory, 70-80, Wien, 1996. · Zbl 0882.12003
[11] Halter-Koch, F., Narkiewicz, W., Scarcity of finite polynomial orbits. Publ. Math. Debrecen56 (2000), 405-414. · Zbl 0961.11005
[12] Lehmer, D.H., On a problem of Störmer. Illinois J. Math.8 (1964), 57-79. · Zbl 0124.27202
[13] Lenstra, H.W., Euclidean number fields of large degree. Invent. Math.38 (1977), 237-254. · Zbl 0328.12007
[14] Leutbecher, A., Niklasch, G., On cliques of exceptional units and Lenstra’s construction of Euclidean fields. 1380, 150-178, Springer, 1989. · Zbl 0703.11056
[15] D, Z.Mo, R.TIJDEMAN, Exponential diophantine equations with four terms. Indag. Math.(N.S.) 3 (1992), 47-57. · Zbl 0765.11018
[16] Morton, P., Arithmetic properties of periodic points of quadratic maps, II. Acta Arith.87 (1998), 89-102. · Zbl 1029.12002
[17] Narkiewicz, W., Polynomial Mappings. 1600, Springer, 1995. · Zbl 0829.11002
[18] Narkiewicz, W., Pezda, T., Finite polynomial orbits in finitely generated domains. Monatsh. Math.124 (1997), 309-316. · Zbl 0897.13024
[19] Pezda, T., Polynomial cycles in certain local domains. Acta Arith.66 (1994), 11-22. · Zbl 0803.11063
[20] Pillai, S.S., On the equation 2x - 3y = 2X + 3Y. Bull. Calcutta Math. Soc.37 (1945), 15-20. · Zbl 0063.06245
[21] Schlickewei, H.P., S-units equations over number fields. Invent. Math.102 (1990), 95-107. · Zbl 0711.11017
[22] Scott, R., On the equation px - by = c and ax + by = cz. J. Number Theory44 (1993), 153-165. · Zbl 0786.11020
[23] Sierpinski, W., Sur une question concernant le nombre de diviseurs premiers d’un nombre naturel. Colloq. Math.6 (1958), 209-210. · Zbl 0086.03503
[24] Skinner, C.M., On the diophantine equation apx +bqy = c + dpz qw. J. Number Theory35 (1990), 194-207. · Zbl 0703.11017
[25] Störmer, C., Quelques théorèmes sur l’équation de Pell x2 - Dy2 = ±1 et leurs applications. Skr. Vidensk.-selsk. (Christiania) I, Mat. Naturv. Kl. (1897), no.2, 1-48. · JFM 28.0192.02
[26] Tijdeman, R., Wang, L., Sums of products of powers of given prime numbers. Pacific J. Math.132 (1988), 177-193; corr. ibidem135 (1988), 396-398. · Zbl 0606.10012
[27] Wall, C.T.C., A theorem on prime powers. Eureka19 (1957), 10-11.
[28] Wang, L.X., Four terms equations. Indag. Math.51 (1989), 355-361. · Zbl 0698.10011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.