×

A projection method based on the piecewise Chebyshev cardinal functions for nonlinear stochastic ABC fractional integro-differential equations. (English) Zbl 07861261

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
Full Text: DOI

References:

[1] H.Zhang, F.Liu, X.Jiang, and I.Turner, Spectral method for the two‐dimensional time distributed‐order diffusion‐wave equation on a semi‐infinite domain, J. Comput. Appl. Math.399 (2022), 113712. · Zbl 1500.65087
[2] M. N.Sahlan and H.Afshari, Lucas polynomials based spectral methods for solving the fractional order electrohydrodynamics flow model, Commun. Nonlinear Sci. Numer. Simul.107 (2022), 106108. · Zbl 07469333
[3] J.Lin, J.Bai, S.Reutskiy, and J.Lu, A novel RBF‐based meshless method for solving time‐fractional transport equations in 2D and 3D arbitrary domains, Eng. Comput.39 (2023), 1905-1922.
[4] A.Habibirad, E.Hesameddini, and Y.Shekari, A suitable hybrid meshless method for the numerical solution of time‐fractional fourth‐order reaction‐diffusion model in the multi‐dimensional case, Eng. Anal. Bound. Elem.145 (2022), 149-160. · Zbl 1539.65119
[5] A. M.Vargas, Finite difference method for solving fractional differential equations at irregular meshes, Math. Comput. Simul.193 (2022), 204-216. · Zbl 1540.65338
[6] Z.Wang, The local discontinuous Galerkin finite element method for a multiterm time‐fractional initial‐boundary value problem, J. Appl. Math. Comput.68 (2022), 4391-4413. · Zbl 1499.65537
[7] V.Lakshmikantham and M.Rama Mohana Rao, Theory of integro‐differential equations, CRC Press, 1995. · Zbl 0849.45004
[8] K. G.TeBeest, Classroom note: numerical and analytical solutions of Volterra’s population model, SIAM Review39 (1997), 484-493. · Zbl 0892.92020
[9] J. J.Levin and J. A.Nohel, On a system of integrodifferential equations occurring in reactor dynamics, J. Math. Mech.9 (1960), no. 3, 347-368. · Zbl 0094.08503
[10] V. E.Tarasov, Fractional integro‐differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys.158 (2009), 355-359. · Zbl 1177.78020
[11] M.Maleki and M. T.Kajani, Numerical approximations for Volterra’s population growth model with fractional order via a multi‐domain pseudospectral method, Appl. Math. Model.39 (2015), no. 15, 4300-4308. · Zbl 1443.65442
[12] A.Taghipour and H.Aminikhah, A fast collocation method for solving the weakly singular fractional integro‐differential equation, Comput. Appl. Math.41 (2022), no. 4, 1-38. · Zbl 1499.65355
[13] M.Faheem and A.Khan, A wavelet collocation method based on Gegenbauer scaling function for solving fourth‐order time‐fractional integro‐differential equations with a weakly singular kernel, Appl. Numer. Math.184 (2023), 197-218. · Zbl 1508.65140
[14] M. H.Heydari, M. R.Hooshmandasl, F.Mohammadi, and C.Cattani, Wavelets method for solving systems of nonlinear singular fractional Volterra integro‐differential equations, Commun. Nonlinear Sci. Numer. Simul.19 (2014), no. 1, 37-48. · Zbl 1344.65126
[15] T. M.Atanackovic and B.Stankovic, On a system of differential equations with fractional derivatives arising in rod theory, J. Phys. A Math. Gen.37 (2004), no. 4, 1241. · Zbl 1059.35011
[16] W. J.Padgett and C. P.Tsokos, A stochastic model for chemotherapy Computer simulation, Math. Biosci.9 (1970), 119-133. · Zbl 0212.25401
[17] S.Banihashemi, H.Jafaria, and A.Babaei, A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay, Discrete Contin. Dyn. Syst.‐S15 (2022), no. 2, 339. · Zbl 1492.60208
[18] M.Hutzenthaler, T.Kruse, and T. A.Nguyen, Multilevel Picard approximations for Mckean‐Vlasov stochastic differential equations, J. Math. Anal. Appl.507 (2022), no. 1, 125761. · Zbl 1489.65015
[19] R.Zeghdane, Numerical solution of stochastic integral equations by using Bernoulli operational matrix, Math. Comput. Simul.165 (2019), 238-254. · Zbl 1470.65224
[20] E.Solhi, F.Mirzaee, and S.Naserifar, Approximate solution of two dimensional linear and nonlinear stochastic Itô‐Volterra integral equations via meshless scheme, Math. Comput. Simul.207 (2023), 369-387. · Zbl 1540.65027
[21] M. H.Heydari, Z.Avazzadeh, and M. R.Mahmoudi, Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable‐order fractional Brownian motion, Chaos Solitons Fractals124 (2019), 105-124. · Zbl 1448.60090
[22] M. H.Heydari, M. R.Mahmoudi, A.Shakiba, and Z.Avazzadeh, Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul.64 (2018), 98-121. · Zbl 1506.65020
[23] M. H.Heydari, M. R.Hooshmand, A.Shakiba, and C.Cattani, Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations, Nonlinear Dyn.85 (2016), no. 2, 1185-1202. · Zbl 1355.65011
[24] M.Kamrani, Convergence of Galerkin method for the solution of stochastic fractional integro differential equations, Optik127 (2016), no. 20, 10049-10057.
[25] A. N. V.Rao and C. P.Tsokos, On the existence, uniqueness, and stability behavior of a random solution to a nonlinear perturbed stochastic integro‐differential equation, Inf. Control.27 (1975), no. 1, 61-74. · Zbl 0292.60095
[26] S. A.McKinley and H. D.Nguyen, Anomalous diffusion and the generalized Langevin equation, SIAM J. Math. Anal.50 (2018), no. 5, 5119-5160. · Zbl 1409.60055
[27] R.Cont and P.Tankov, Financial modelling with jump processes, CRC Press, 2003.
[28] F.Mirzaee and S.Alipour, Cubic B‐spline approximation for linear stochastic integro‐differential equation of fractional order, J. Comput. Appl. Math.366 (2020), 112440. · Zbl 1483.65221
[29] F.Mirzaee, E.Solhi, and S.Naserifar, Approximate solution of stochastic Volterra integro‐differential equations by using moving least squares scheme and spectral collocation method, Appl. Math. Comput.410 (2021), 126447. · Zbl 1510.65327
[30] F.Mirzaee and S.Alipour, Numerical solution of nonlinear partial quadratic integro‐differential equations of fractional order via hybrid of block‐pulse and parabolic functions, Numerical Methods for Partial Differ. Equ.35 (2019), no. 3, 1134-1151. · Zbl 1418.65152
[31] F.Mirzaee and N.Samadyar, Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro‐differential equation, Optik132 (2017), 262-273.
[32] Z.Taheri, S.Javadi, and E.Babolian, Numerical solution of stochastic fractional integro‐differential equation by the spectral collocation method, J. Comput. Appl. Math.321 (2017), 336-347. · Zbl 1366.65006
[33] A.Atangana and D.Baleanu, New fractional derivatives with nonlocal and non‐singular kernel: theory and application to heat transfer model, Therm. Sci.20 (2016), 763-769.
[34] L.Verma and R.Meher, Study on generalized fuzzy fractional human liver model with Atangana-Baleanu-Caputo fractional derivative, Eur. Phys. J. Plus137 (2022), no. 11, 1-20.
[35] S.Kumar and D.Zeidan, Numerical study of Zika model as a mosquito‐borne virus with non‐singular fractional derivative, Int. J. Biomath.15 (2022), no. 05, 2250018. · Zbl 1489.92161
[36] M.Farman, A.Akgül, T.Abdeljawad, P. A.Naik, N.Bukhari, and A.Ahmad, Modeling and analysis of fractional order Ebola virus model with Mittag‐Leffler kernel, Alex. Eng. J.61 (2022), no. 3, 2062-2073.
[37] F. C.Klebaner, Introduction to stochastic calculus with applications, World Scientific Publishing Company, 2012. · Zbl 1274.60005
[38] B.Oksendal, Stochastic differential equations: an introduction with applications, Springer Science and Business Media, 2013.
[39] S. I.Denisov, P.Hänggi, and H.Kantz, Parameters of the fractional Fokker‐Planck equation, Europhys. Lett.85 (2009), no. 4, 40007.
[40] M. H.Heydari and M.Razzaghi, Piecewise Chebyshev cardinal functions: application for constrained fractional optimal control problems, Chaos Solitons Fractals150 (2021), 111118. · Zbl 1498.49011
[41] I.Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
[42] M.Hosseininia and M. H.Heydari, Legendre wavelets for the numerical solution of nonlinear variable‐order time fractional 2D reaction‐diffusion equation involving Mittag‐Leffler non‐singular kernel, Chaos Solitons Fractals127 (2019), 400-407. · Zbl 1448.65104
[43] M. H.Heydari, M. R.Hooshmandasl, G.Barid Loghmani, and C.Cattani, Wavelets Galerkin method for solving stochastic heat equation, Int. J. Comput. Math.93 (2016), no. 9, 1579-1596. · Zbl 1356.65018
[44] Y. R. W.Yin and R.Sakthivel, Stabilization of stochastic differential equations driven by G‐Brownian motion with feedback control based on discrete‐time state observation, Automatica95 (2018), 146-151. · Zbl 1402.93256
[45] Y.Renand, R.Sakthivel, and G.Sun, Robust stability and boundedness of stochastic differential equations with delay driven by G‐Brownian motion, Int. J. Control.93 (2020), no. 12, 2886-2895. · Zbl 1460.93077
[46] C.Canuto, M.Hussaini, A.Quarteroni, and T.Zan, Spectral methods in fluid dynamics, Springer‐Verlage, Berlin, 1988. · Zbl 0658.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.