×

Comparative analysis of obstacle approximation strategies for the steady incompressible Navier-Stokes equations. (English) Zbl 1532.35347

Summary: This paper aims to compare and evaluate various obstacle approximation techniques employed in the context of the steady incompressible Navier-Stokes equations. Specifically, we investigate the effectiveness of a standard volume penalization approximation and an approximation method utilizing high viscosity inside the obstacle region, as well as their composition. Analytical results concerning the convergence rate of these approaches are provided, and extensive numerical experiments are conducted to validate their performance.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage
70E99 Dynamics of a rigid body and of multibody systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations

Software:

Gmsh; FEniCS

References:

[1] Aguayo, J.; Lincopi, HC, Analysis of obstacles immersed in viscous fluids using Brinkman’s law for steady Stokes and Navier-Stokes equations, SIAM J. Appl. Math., 82, 4, 1369-1386 (2022) · Zbl 1504.35271 · doi:10.1137/20M138569X
[2] Angot, P., Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci., 22, 16, 1395-1412 (1999) · Zbl 0937.35129 · doi:10.1002/(SICI)1099-1476(19991110)22:16<1395::AID-MMA84>3.0.CO;2-3
[3] Angot, P.; Bruneau, C-H; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 4, 497-520 (1999) · Zbl 0921.76168 · doi:10.1007/s002110050401
[4] Dauge, M., Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal., 20, 1, 74-97 (1989) · Zbl 0681.35071 · doi:10.1137/0520006
[5] Geuzaine, C.; Remacle, J-F, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (1996) · Zbl 1176.74181 · doi:10.1002/nme.2579
[6] Hoffmann, K-H; Starovoitov, VN, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., 9, 2, 633-648 (1999) · Zbl 0966.76016
[7] Kadoch, B.; Kolomenskiy, D.; Angot, P.; Schneider, K., A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles, J. Comput. Phys., 231, 12, 4365-4383 (2012) · Zbl 1244.76074 · doi:10.1016/j.jcp.2012.01.036
[8] Larson, MG; Bengzon, F., The Finite Element Method: Theory, Implementation, and Applications. Texts in Computational Science and Engineering (2013), Heidelberg: Springer, Heidelberg · Zbl 1263.65116 · doi:10.1007/978-3-642-33287-6
[9] Logg, A.; Mardal, K-A; Wells, GN, Automated Solution of Differential Equations by the Finite Element Method (2012), New York: Springer, New York · Zbl 1247.65105
[10] Malikova, S., Approximation of rigid obstacle by highly viscous fluid, J. Elliptic Parabol. Equ., 9, 191-230 (2023) · Zbl 1516.35338 · doi:10.1007/s41808-022-00196-3
[11] San Martin, JA; Starovoitov, V.; Tucsnak, M., Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161, 2, 113-147 (2002) · Zbl 1018.76012 · doi:10.1007/s002050100172
[12] Starovoitov, V., Penalty method and problems of liquid-solid interaction, J. Eng. Thermophys., 18, 2, 129-137 (2009) · doi:10.1134/S1810232809020040
[13] Wichrowski, M.; Krzyzanowski, P., A matrix-free multilevel preconditioner for the generalized stokes problem with discontinuous viscosity, J. Comput. Sci., 63 (2022) · doi:10.1016/j.jocs.2022.101804
[14] Wróblewska-Kamińska, A., Existence result for the motion of several rigid bodies in an incompressible non-Newtonian fluid with growth conditions in Orlicz spaces, Nonlinearity, 27, 4, 685-716 (2014) · Zbl 1292.35242 · doi:10.1088/0951-7715/27/4/685
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.