×

Dirac electron free field anticommutator and its zeros on time intervals. (English. Russian original) Zbl 1541.81083

Dokl. Math. 108, No. 2, 363-368 (2023); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 513, 44-50 (2023).
Summary: Estimates are obtained for time intervals containing a zero of the Pauli-Jordan-Dirac anticommutator in a discrete representation in the one- and three-dimensional cases.

MSC:

81R25 Spinor and twistor methods applied to problems in quantum theory
81V72 Particle exchange symmetries in quantum theory (general)
78A15 Electron optics
17C55 Finite-dimensional structures of Jordan algebras
Full Text: DOI

References:

[1] Dirac, P. A. M., The quantum theory of the emission and absorption of radiation, Proc. R. Soc. London Ser. A, 114, 243-265, 1927 · JFM 53.0847.01 · doi:10.1098/rspa.1927.0039
[2] Dirac, P. A. M., Discussion of the infinite distribution of electrons in the theory of the positron, Math. Proc. Cambridge Philos. Soc., 30, 150-163, 1934 · JFM 60.0790.02 · doi:10.1017/S030500410001656X
[3] Jordan, P.; Pauli, W., Zur Quantenelektrodynamik ladungsfreier Felder, Z. Phys., 47, 151-173, 1928 · JFM 54.0971.02 · doi:10.1007/BF02055793
[4] Schiff, L. I., Quantum Mechanics, 1955, New York: McGraw-Hill, New York · Zbl 0068.40202
[5] E. A. Karatsuba, “Zeros and points of discontinuity of the commutator function of the free Dirac field,” J. Phys.: Conf. Ser. 128, 012015 (2008). · Zbl 1189.81242
[6] Karatsuba, E. A., The commutator function of the free Dirac field in the discrete representation and its zeros, Pac. J. Appl. Math., 1, 37-55, 2008
[7] Bogoliubov, N. N.; Shirkov, D. V., Introduction to the Theory of Quantized Fields, 1980, New York: Wiley, New York
[8] Dirac, P. A. M., On the theory of quantum mechanics, Proc. R. Soc. London Ser. A, 112, 661-677, 1926 · JFM 52.0975.01 · doi:10.1098/rspa.1926.0133
[9] Dirac, P. A. M., On the annihilation of electrons and protons, Math. Proc. Cambridge Philos. Soc., 26, 361-375, 1930 · JFM 56.0751.03 · doi:10.1017/S0305004100016091
[10] Fermi, E., Quantum theory of radiation, Rev. Mod. Phys., 4, 87-132, 1932 · JFM 58.1351.04 · doi:10.1103/RevModPhys.4.87
[11] Pauli, W., The connection between spin and statistics, Phys. Rev., 58, 716-722, 1940 · JFM 66.1177.01 · doi:10.1103/PhysRev.58.716
[12] Pauli, W., Relativistic field theories of elementary particles, Rev. Mod. Phys., 13, 203-232, 1941 · Zbl 0028.38003 · doi:10.1103/RevModPhys.13.203
[13] Schwinger, J., Quantum electrodynamics: I. A covariant formulation, Phys. Rev., 74, 1439-1461, 1948 · Zbl 0032.09404 · doi:10.1103/PhysRev.74.1439
[14] F. Mercati and M. Sergola, “Pauli-Jordan function and scalar field quantization in κ-Minkowski noncommutative spacetime,” Phys. Rev. D 98, 045017 (2018). · Zbl 1403.81064
[15] D. Liu, F. Chen, S. Chen, and N. Ma, “Calculating Pauli-Jordan function,” Eur. J. Phys. 41 (3), 035406 (2020). · Zbl 07676785
[16] Karatsuba, A. A.; Karatsuba, E. A., Physical mathematics in number theory, Funct. Anal. Other Math., 3, 113-125, 2011 · Zbl 1253.11081 · doi:10.1007/s11853-010-0044-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.