×

Comparative study of two different FMM-BEM methods in solving 2-D acoustic transmission problems with a multilayered obstacle. (English) Zbl 1271.76203

Summary: The fast multipole method (FMM) is an effective approach for accelerating the computation efficiency of the boundary element method (BEM) in solving problems that are computationally intensive. This paper presents two different BEMs, i.e., Kress’ and Seydou’s methods, for solving two-dimensional (2D) acoustic transmission problems with a multilayered obstacle, along with application of the FMM to solution of the related boundary integral equations. Conventional BEM requires \(O(MN^2)\) operations to compute the equations for this problem. By using the FMM, both the amount of computation and the memory requirement of the BEM are reduced to order \(O(MN)\), where M is the number of layers of the obstacle. The efficiency and accuracy of this approach in dealing with the acoustic transmission problems containing a multilayered obstacle are demonstrated in the numerical examples. It is confirmed that this approach can be applied to solving the acoustic transmission problems for an obstacle with multilayers.

MSC:

76M15 Boundary element methods applied to problems in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76Q05 Hydro- and aero-acoustics
Full Text: DOI

References:

[1] DOI: 10.1016/0021-9991(85)90002-6 · Zbl 0629.65122 · doi:10.1016/0021-9991(85)90002-6
[2] DOI: 10.1016/0021-9991(90)90107-C · Zbl 0686.65079 · doi:10.1016/0021-9991(90)90107-C
[3] DOI: 10.1017/CBO9780511605345 · doi:10.1017/CBO9780511605345
[4] DOI: 10.1115/1.1482087 · doi:10.1115/1.1482087
[5] DOI: 10.1016/j.jcp.2003.11.021 · Zbl 1053.65095 · doi:10.1016/j.jcp.2003.11.021
[6] DOI: 10.1006/jcph.1999.6355 · Zbl 0937.65126 · doi:10.1006/jcph.1999.6355
[7] DOI: 10.1016/j.enganabound.2005.03.007 · Zbl 1182.74256 · doi:10.1016/j.enganabound.2005.03.007
[8] DOI: 10.1016/j.enganabound.2007.07.005 · Zbl 1244.76052 · doi:10.1016/j.enganabound.2007.07.005
[9] DOI: 10.1115/1.1825436 · Zbl 1111.74528 · doi:10.1115/1.1825436
[10] DOI: 10.1007/s00466-006-0121-2 · Zbl 1176.76083 · doi:10.1007/s00466-006-0121-2
[11] DOI: 10.1016/j.enganabound.2009.04.005 · Zbl 1244.76030 · doi:10.1016/j.enganabound.2009.04.005
[12] DOI: 10.1016/S0955-7997(02)00161-3 · Zbl 1039.65084 · doi:10.1016/S0955-7997(02)00161-3
[13] DOI: 10.1016/j.enganabound.2003.07.001 · Zbl 1049.76042 · doi:10.1016/j.enganabound.2003.07.001
[14] DOI: 10.1002/nme.2077 · Zbl 1159.74047 · doi:10.1002/nme.2077
[15] DOI: 10.1016/S0955-7997(01)00030-3 · Zbl 1014.74078 · doi:10.1016/S0955-7997(01)00030-3
[16] DOI: 10.1016/j.jcp.2008.01.029 · Zbl 1206.78084 · doi:10.1016/j.jcp.2008.01.029
[17] DOI: 10.1016/S0009-2614(97)01329-8 · doi:10.1016/S0009-2614(97)01329-8
[18] Wang H. T., Acta Mechanica Sinica 20 pp 613–
[19] Wang H. T., Computer Modeling in Engineering and Sciences 7 pp 85–
[20] DOI: 10.1016/j.enganabound.2005.03.002 · Zbl 1182.74242 · doi:10.1016/j.enganabound.2005.03.002
[21] DOI: 10.1016/j.compstruc.2004.09.007 · doi:10.1016/j.compstruc.2004.09.007
[22] DOI: 10.1006/jcph.2002.7110 · Zbl 1143.78372 · doi:10.1006/jcph.2002.7110
[23] T. Nishida and K. Hayami, Boundary Elements XIX (Computational Mechanics, Southampton, 1997) pp. 613–622.
[24] DOI: 10.1137/S1064827500369967 · Zbl 1002.65131 · doi:10.1137/S1064827500369967
[25] Chew W. C., Waves and Fields in Inhomogeneous Media (1990)
[26] Colton D., Integral Equation in Scattering Theory (1983) · Zbl 0522.35001
[27] DOI: 10.1007/978-3-662-02835-3 · doi:10.1007/978-3-662-02835-3
[28] DOI: 10.1016/0895-7177(91)90068-I · Zbl 0731.76077 · doi:10.1016/0895-7177(91)90068-I
[29] DOI: 10.1063/1.523808 · Zbl 0433.35017 · doi:10.1063/1.523808
[30] DOI: 10.1137/0148016 · Zbl 0663.76095 · doi:10.1137/0148016
[31] Seydou F., IEEE Wireless Communications and Applied Computational Electromagnetic, J. Acoust. Soc. Am. 88 pp 1612–
[32] Seydou F., Applied Computational Electromagnetics Society Journal 19 pp 100–
[33] Abramowitz M., Handbook of Mathematical Functions (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.