×

On MCMC sampling in self-exciting integer-valued threshold time series models. (English) Zbl 07476343

Summary: Markov Chain Monte Carlo (MCMC) methods have been shown to be a useful tool in many branches in statistics. However, due to the complex structure of the models, this method remains an open problem for threshold integer-valued time series models. This study develops Bayesian inference for a class of self-exciting integer-valued threshold autoregressive models, which is implemented by means of a new MCMC algorithm. By introducing the latent variables series, a complete data likelihood is obtained. Based on which, the full conditional distributions are easily obtained with familiar forms. Furthermore, by maximizing the complete data likelihood, the threshold parameter is also accurately estimated. Finally, the performance of the MCMC algorithm is evaluated via some simulations and a real data example.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F15 Bayesian inference
62P10 Applications of statistics to biology and medical sciences; meta analysis
62-08 Computational methods for problems pertaining to statistics

Software:

Bolstad
Full Text: DOI

References:

[1] Agosto, A.; Cavaliere, G.; Kristensen, D.; Rahbek, A., Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX), J. Empir. Finance, 38, 640-663 (2016)
[2] Al-Osh, M. A.; Alzaid, A. A., First-order integer-valued autoregressive (INAR(1)) process, J. Time Ser. Anal., 8, 261-275 (1987) · Zbl 0617.62096
[3] Alzaid, A. A.; Al-Osh, M. A., An integer-valued pth-order autoregressive structure (INAR(p)) process, J. Appl. Probab., 27, 314-324 (1990) · Zbl 0704.62081
[4] Ausín, M. C.; Galeano, P., Bayesian estimation of the Gaussian mixture GARCH model, Comput. Stat. Data Anal., 51, 2636-2652 (2007) · Zbl 1161.62397
[5] Barnett, G.; Kohn, R.; Sheather, S., Bayesian estimation of an autoregressive model using Markov chain Monte Carlo, J. Econom., 74, 237-254 (1996) · Zbl 0864.62057
[6] Bisaglia, L.; Canale, A., Bayesian nonparametric forecasting for INAR models, Comput. Stat. Data Anal., 100, 70-78 (2016) · Zbl 1466.62034
[7] Bolstad, W. M., Introduction to Bayesian Statistics (2007), Wiley: Wiley Hoboken, NJ · Zbl 1136.62023
[8] Box, G. E.P.; Jenkins, G. M., Time Series Analysis: Forecasting and Control (1970), Holden-Day: Holden-Day San Francisco · Zbl 0249.62009
[9] Brännäs, K.; Hellström, J., Generalized integer-valued autoregression, Econom. Rev., 20, 425-443 (2001) · Zbl 1077.62530
[10] Brännäs, K.; Quoreshi, A. M.M. S., Integer-valued moving average modelling of the number of transactions in stocks, Appl. Financ. Econ., 20, 1429-1440 (2010)
[11] Bu, R.; McCabe, B., Model selection, estimation and forecasting in INAR(p) models: a likelihood-based Markov Chain approach, Int. J. Forecast., 24, 151-162 (2008)
[12] Cardinal, M.; Roy, R.; Lambert, J., On the application of integer-valued time series models for the analysis of disease incidence, Stat. Med., 18, 2025-2039 (1999)
[13] Chen, C. W.S.; Lee, S., Generalized Poisson autoregressive models for time series of counts, Comput. Stat. Data Anal., 99, 51-67 (2016) · Zbl 1468.62037
[14] Davis, R. A.; Fokianos, K.; Holan, S. H.; Joe, H.; Livsey, J.; Lund, R.; Pipiras, V.; Ravishanker, N., Count time series: a methodological review, J. Am. Stat. Assoc., 116, 1533-1547 (2021) · Zbl 1510.62356
[15] Drost, F. C.; van den Akker, R.; Werker, B. J.M., Efficient estimation of autoregression parameters and innovation distributions for semiparametric integer-valued AR(p) model, J. R. Stat. Soc. B, 71, 467-485 (2009) · Zbl 1248.62147
[16] Drovandi, C. C.; Pettitt, A. N.; Mccutchan, R. A., Exact and approximate Bayesian inference for low integer-valued time series models with intractable likelihoods, Bayesian Anal., 11, 325-352 (2016) · Zbl 1359.62365
[17] Du, J. G.; Li, Y., The integer-valued autoregressive (INAR(p)) model, J. Time Ser. Anal., 12, 129-142 (1991) · Zbl 0727.62084
[18] Freeland, R. K., True integer value time series, AStA Adv. Stat. Anal., 94, 217-229 (2010) · Zbl 1443.62255
[19] Fried, R.; Agueusop, I.; Bornkamp, B.; Fokianos, K.; Fruth, J.; Ickstadt, K., Retrospective Bayesian outlier detection in INGARCH series, Stat. Comput., 25, 365-374 (2015) · Zbl 1332.62321
[20] Gelman, A.; Rubin, D. B., Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-511 (1992) · Zbl 1386.65060
[21] Guan, G.; Hu, X., On the analysis of a discrete-time risk model with INAR(1) processes, Scand. Actuar. J. (2021)
[22] Kashikar, A. S.; Rohan, N.; Ramanathan, T., Integer autoregressive models with structural breaks, J. Appl. Stat., 40, 2653-2669 (2013) · Zbl 1514.62662
[23] Lehmann, E. L.; Casella, G., Theory of Point Estimation (1998), Springer: Springer New York · Zbl 0916.62017
[24] Li, C.; Wang, D.; Zhu, F., Detecting mean increases in zero truncated INAR(1) processes, Int. J. Prod. Res., 57, 5589-5603 (2019)
[25] Li, H.; Yang, K.; Wang, D., Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes, Comput. Stat., 32, 1597-1620 (2017) · Zbl 1417.62251
[26] Li, H.; Yang, K.; Wang, D., A threshold stochastic volatility model with explanatory variables, Stat. Neerl., 73, 118-138 (2019) · Zbl 07788768
[27] Li, H.; Yang, K.; Zhao, S.; Wang, D., First-order random coefficients integer-valued threshold autoregressive processes, AStA Adv. Stat. Anal., 102, 305-331 (2018) · Zbl 1421.62125
[28] Li, Y.; Yu, J.; Zeng, T., Deviance information criterion for latent variable models and misspecified models, J. Econom., 216, 450-493 (2020) · Zbl 1456.62045
[29] Manaa, A.; Bentarzi, M., On a periodic SETINAR model, Commun. Stat., Simul. Comput. (2021)
[30] Meyn, S. P.; Tweedie, R. L., Markov Chains and Stochastic Stability (1993), Springer: Springer London · Zbl 0925.60001
[31] Mohammadpour, M.; Bakouch, H. S.; Shirozhan, M., Poisson-Lindley INAR(1) model with applications, Braz. J. Probab. Stat., 32, 262-280 (2018) · Zbl 1395.62278
[32] Möller, T. A.; Silva, M. E.; Weiß, C. H.; Scotto, M. G.; Pereira, I., Self-exciting threshold binomial autoregressive processes, AStA Adv. Stat. Anal., 100, 369-400 (2016) · Zbl 1443.62280
[33] Monteiro, M.; Scotto, M. G.; Pereira, I., Integer-valued self-exciting threshold autoregressive processes, Commun. Stat., Theory Methods, 41, 2717-2737 (2012) · Zbl 1270.62122
[34] Neal, P.; Rao, T. S., MCMC for integer-valued ARMA processes, J. Time Ser. Anal., 28, 92-110 (2007) · Zbl 1164.62049
[35] Pedeli, X.; Davison, A. C.; Fokianos, K., Likelihood estimation for the INAR(p) model by saddlepoint approximation, J. Am. Stat. Assoc., 110, 1229-1238 (2015) · Zbl 1373.62453
[36] Schweer, S.; Weiß, C. H., Compound Poisson INAR(1) processes: stochastic properties and testing for overdispersion, Comput. Stat. Data Anal., 77, 267-284 (2014) · Zbl 1506.62162
[37] Scotto, M. G.; Weiß, C. H.; Gouveia, S., Thinning-based models in the analysis of integer-valued time series: a review, Stat. Model., 15, 590-618 (2015) · Zbl 07259004
[38] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; Linde, A. V.D., Bayesian measures of model complexity and fit, J. R. Stat. Soc. B, 64, 583-639 (2002) · Zbl 1067.62010
[39] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; Linde, A. V.D., The deviance information criterion: 12 years on, J. R. Stat. Soc. B, 76, 485-493 (2014) · Zbl 1411.62027
[40] Steutel, F.; van Harn, K., Discrete analogues of self-decomposability and stability, Ann. Probab., 7, 893-899 (1979) · Zbl 0418.60020
[41] Thyregod, P.; Carstensen, J.; Madsen, H.; Arnbjerg-Nielsen, K., Integer valued autoregressive models for tipping bucket rainfall measurements, Environmetrics, 10, 295-411 (1999)
[42] Wang, C.; Liu, H.; Yao, J.; Davis, R. A.; Li, W. K., Self-excited threshold Poisson autoregression, J. Am. Stat. Assoc., 109, 776-787 (2014) · Zbl 1367.62267
[43] Wang, X.; Wang, D.; Yang, K.; Xu, D., Estimation and testing for the integer-valued threshold autoregressive models based on negative binomial thinning, Commun. Stat., Simul. Comput., 50, 1622-1644 (2021) · Zbl 1497.62248
[44] Yang, K.; Ding, X.; Yuan, X., Bayesian empirical likelihood inference and order shrinkage for autoregressive models, Stat. Pap. (2021)
[45] Yang, K.; Li, H.; Wang, D., Estimation of parameters in the self-exciting threshold autoregressive processes for nonlinear time series of counts, Appl. Math. Model., 57, 226-247 (2018) · Zbl 1480.62183
[46] Yang, K.; Li, H.; Wang, D., Threshold autoregression analysis for finite-range time series of counts with an application on measles data, J. Stat. Comput. Simul., 88, 597-614 (2018) · Zbl 07192569
[47] Yang, K.; Li, H.; Wang, D.; Zhang, C., Random coefficients integer-valued threshold autoregressive processes driven by logistic regression, AStA Adv. Stat. Anal., 105, 533-557 (2021) · Zbl 1478.62271
[48] Yang, K.; Wang, D.; Jia, B.; Li, H., An integer-valued threshold autoregressive process based on negative binomial thinning, Stat. Pap., 59, 1131-1160 (2018) · Zbl 1415.62068
[49] Zhang, C.; Wang, D.; Yang, K.; Li, H.; Wang, X., Generalized Poisson integer-valued autoregressive processes with structural changes, J. Appl. Stat. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.