×

A theorem of Gordan and Noether via Gorenstein rings. (English) Zbl 1540.14088

In the 1850’s [J. Reine Angew. Math. 42, 117–124 (1851; ERAM 042.1147cj); J. Reine Angew. Math. 56, 263–269 (1859; ERAM 056.1491cj)], O. Hesse claimed that any hypersurface \(X \subset \mathbb P^N\) with vanishing hessian is a cone. Subsequently in 1876 P. Gordan and M. Nöther [Math. Ann. 10, 547–568 (1876; JFM 08.0064.05)] showed that this is not true for \(N \geq 4\). In \(\mathbb P^4\) they gave a complete description of the hypersurfaces with vanishing hessian that are not cones. A nice treatment of this topic can be found in the book by F. Russo [On the geometry of some special projective varieties. Cham: Springer (2016; Zbl 1337.14001)]. In this context hessians were studied by J. Watanabe in 2000 and by T. Maeno and J. Watanabe [Ill. J. Math. 53, No. 2, 591–603 (2009; Zbl 1200.13031)], connecting it to the Lefschetz properties for artinian Gorenstein algebras via Macaulay’s inverse systems. One class of such hypersurfaces that have been carefully studied (and is further studied in this paper) with an eye to the Lefschetz properties is that of Perazzo hypersurfaces. See for instance the paper of L. Fiorindo, E. Mezzetti and R. Miró-Roig [L. Fiorindo et al., J. Algebra 626, 56–81 (2023; Zbl 1516.14066)], where they study the connections between the Lefschetz properties and the Hilbert function for the associated artinian Gorenstein algebras. In the paper under review, the authors start by recalling the Gordan-Noether theorem and its connection to the Lefschetz properties. They take a different point of view for \(\mathbb P^4\), giving a direct proof of the fact that all artinian Gorenstein algebras \(R\) of codimension \(\leq 4\) have the property that there exists a linear form \(\ell\) such that \(\times \ell : [R]_1 \rightarrow [R]_{e-1}\) is an isomorphism (where \(e\) is the socle degree). From this they deduce the Gordan-Noether theorem. The authors use this point of view to prove that in \(S = k[x_0,\dots,x_4]\), if \(I\) is an ideal generated by a regular sequence of 5 quadrics then \(S/I\) satisfies the Strong Lefschetz Property (SLP), and in particular \(\times \ell^3 : [R]_1 \rightarrow [R]_4\) is an isomorphism. For example, this holds for Jacobian rings associated to smooth cubic threefolds. As a consequence, their work gives a new proof of a result of U. Nagel and the reviewer related to the Weak Lefschetz Property for complete intersections of quadrics in general.

MSC:

14J70 Hypersurfaces and algebraic geometry
14J30 \(3\)-folds
13E10 Commutative Artinian rings and modules, finite-dimensional algebras
14A25 Elementary questions in algebraic geometry
14A05 Relevant commutative algebra

References:

[1] Alzati, A.; Re, R., Complete intersections of quadrics and the weak Lefschetz property, Collect. Math., 70, 2, 283-294 (2019) · Zbl 1432.13001 · doi:10.1007/s13348-018-0230-1
[2] Brenner, H.; Kaid, A., Syzygy bundles on \({\mathbb{P} }^2\) and the weak Lefschetz property, Illinois J. Math., 51, 4, 1299-1308 (2007) · Zbl 1148.13007 · doi:10.1215/ijm/1258138545
[3] Bricalli, D.; Favale, F., Lefschetz properties for Jacobian rings of cubic fourfolds and other Artinian algebras, Collect. Math. (2022) · Zbl 1532.14074 · doi:10.1007/s13348-022-00382-5
[4] Ciliberto, C.; Russo, F.; Simis, A., Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian, Adv. Math., 218, 6, 1759-1805 (2008) · Zbl 1144.14009 · doi:10.1016/j.aim.2008.03.025
[5] Ciliberto, C.; Ottaviani, G., The Hessian map, Int. Math. Res. Not., 8, 5781-5817 (2022) · Zbl 1492.14093 · doi:10.1093/imrn/rnaa288
[6] de Bondt, M., Watanabe, J.: On the theory of Gordan-Noether on homogeneous forms with zero Hessian (improved version). Polynomial rings and affine algebraic geometry, Springer Proc. Math. Stat., vol. 319, pp. 73-107. Springer, Cham (2020). doi:10.1007/978-3-030-42136-6_3 · Zbl 1455.14118
[7] Dimca, A., Sticlaru, G.: On the birationality of the Hessian maps of quartic curves and cubic surfaces. Preprint at arXiv:2111.01087 (2021) · Zbl 1520.14083
[8] Dimca, A.; Papadima, S., Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. Math., 158, 2, 473-507 (2003) · Zbl 1068.32019 · doi:10.4007/annals.2003.158.473
[9] Dimca, A.; Gondim, R.; Ilardi, G., Higher order Jacobians, Hessians and Milnor algebras, Collect. Math., 71, 3, 407-425 (2020) · Zbl 1448.13003 · doi:10.1007/s13348-019-00266-1
[10] Favale, FF; Pirola, GP, Infinitesimal variation functions for families of smooth varieties, Milan J. Math., 90, 1, 209-228 (2022) · Zbl 1531.14015 · doi:10.1007/s00032-022-00353-2
[11] Franchetta, A., Sulle forme algebriche di \(S_4\) aventi hessiana indeterminata, Rend. Mat., 13, 1-6 (1954) · Zbl 0058.37102
[12] Garbagnati, A.; Repetto, F., A geometrical approach to Gordan-Noether’s and Franchetta’s contributions to a question posed by Hesse, Collect. Math., 60, 1, 27-41 (2009) · Zbl 1180.14045 · doi:10.1007/BF03191214
[13] Gondim, R.; Zappalà, G., Lefschetz properties for Artinian Gorenstein algebras presented by quadrics, Proc. Am. Math. Soc., 146, 3, 993-1003 (2018) · Zbl 1409.13002 · doi:10.1090/proc/13822
[14] Gondim, R., On higher Hessians and the Lefschetz properties, J. Algebra, 489, 241-263 (2017) · Zbl 1387.13037 · doi:10.1016/j.jalgebra.2017.06.030
[15] Gordan, P.; Nöther, M., Ueber die algebraischen Formen, deren Hesse’sche Determinante identisch verschwindet, Math. Ann., 10, 4, 547-568 (1876) · JFM 08.0064.05 · doi:10.1007/BF01442264
[16] Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A., Watanabe, J.: The Lefschetz properties. Lecture Notes in Mathematics, vol. 2080, pp. xx+250. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38206-2 · Zbl 1284.13001
[17] Harima, T.; Migliore, J.; Nagel, U.; Watanabe, J., The weak and strong Lefschetz properties for Artinian \(K\)-algebras, J. Algebra, 262, 1, 99-126 (2003) · Zbl 1018.13001 · doi:10.1016/S0021-8693(03)00038-3
[18] Hesse, O., Über die Bedingung, unter welche eine homogene ganze Function von n unabhángigen Variabeln durch Lineäre Substitutionen von n andern unabhángigenVariabeln auf eine homogene Function sich zurück-führen lässt, die eine Variable weniger enthält, J. Reine Angew. Math., 42, 117-124 (1851) · ERAM 042.1147cj
[19] Hesse, O., Zur Theorie der ganzen homogenen Functionen, J. Reine Angew. Math., 56, 263-269 (1859) · ERAM 056.1491cj
[20] Ilardi, G., Jacobian ideals, arrangements and the Lefschetz properties, J. Algebra, 508, 418-430 (2018) · Zbl 1390.13056 · doi:10.1016/j.jalgebra.2018.04.029
[21] Kleiman, S.: Tangency and duality. Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., Amer. Math. Soc., Providence, RI, vol. 6, pp. 163-225 (1986) · Zbl 0601.14046
[22] Lossen, C., When does the Hessian determinant vanish identically? (On Gordan and Noether’s proof of Hesse’s claim), Bull. Braz. Math. Soc., 35, 1, 71-82 (2004) · Zbl 1061.12002 · doi:10.1007/s00574-004-0004-0
[23] Macaulay, F. S.: The algebraic theory of modular systems, Cambridge Mathematical Library, Revised reprint of the 1916 original; With an introduction by Paul Roberts, pp. xxxii+112, Cambridge University Press, Cambridge (1994) · Zbl 0802.13001
[24] Maeno, T.; Watanabe, J., Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Illinois J. Math., 53, 2, 591-603 (2009) · Zbl 1200.13031 · doi:10.1215/ijm/1266934795
[25] Migliore, J.; Nagel, U., Gorenstein algebras presented by quadrics, Collect. Math., 64, 2, 211-233 (2013) · Zbl 1291.13019 · doi:10.1007/s13348-012-0076-x
[26] Perazzo, U., Sulle varietá cubiche la cui hessiana svanisce identicamente, G. Mat. Battaglini, 38, 337-354 (1900) · JFM 31.0127.02
[27] Permutti, R., Su certe forme a hessiana indeterminata, Ricerche di Mat., 6, 3-10 (1957) · Zbl 0077.34401
[28] Permutti, R., Su certe classi di forme a hessiana indeterminata, Ricerche di Mat., 13, 97-105 (1964) · Zbl 0134.16604
[29] Russo, F.: On the geometry of some special projective varieties, Lecture Notes of the Unione Matematica Italiana, vol. 18, pp. xxvi+232. Springer, Cham; Unione Matematica Italiana, Bologna (2016). doi:10.1007/978-3-319-26765-4 · Zbl 1337.14001
[30] Voisin, C.: Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76, Reprint of the 2002 English edition, Translated from the French by Leila Schneps, pp. x+322, Cambridge University Press, Cambridge (2007) · Zbl 1129.14019
[31] Voisin, C.: Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, vol. 77, Reprint of the 2003 English edition, Translated from the French by Leila Schneps, pp. x+351. Cambridge University Press, Cambridge (2007) · Zbl 1129.14020
[32] Wallace, A., Tangency and duality over arbitrary fields, Proc. London Math. Soc., 6, 3, 321-342 (1956) · Zbl 0072.16002 · doi:10.1112/plms/s3-6.3.321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.