×

Weakly biharmonic maps from the ball to the sphere. (English) Zbl 1472.58010

Biharmonic maps are critical point of the bienergy functional \[ E_2(u)=\frac{1}{2}\int_M|\tau(u)|^2 d\,v_g, \] where \(\tau(u)=\textrm{trace}\,\nabla d u\). In particular, harmonic maps are trivially biharmonic maps, as harmonic maps are critical points of the energy functional \[ E(u)=\frac{1}{2}\int_M| d u |^2 d\,v_g. \] Biharmonic maps that are not harmonic are called proper biharmonic maps.
Let \(B^n\) and \(S^n\) denote the \(n\)-dimensional Euclidean unit ball and sphere respectively. The authors study the family of rotationally symmetric maps \(u_a:B^n\rightarrow S^n\subset \mathbb{R}^n\times \mathbb{R}\) given by \[ u_a(x)=\left(\sin a \,\,\frac{x}{|x|},\cos a\right), \] where \(a\) is a constant in \((0,\pi/2)\). In particular, the authors show (Theorem 1.1) that such maps are proper weakly biharmonic if and only if if either \( n = 5\) and \(a = \pi/3\) or \(n = 6\) and \(a = 1/2 \arccos(-4/5)\). In any of these two cases, \(u_a\) is unstable (Theorem 1.2).
The paper has three sections and it is quite self-contained, with a recollection of the necessary results on Sobolev spaces and weak solutions presented in section 2. Proofs of the main results are given in section 3.

MSC:

58E20 Harmonic maps, etc.
53C43 Differential geometric aspects of harmonic maps

References:

[1] Aubin, T., Some Nonlinear Problems in Riemannian Geometry (1998), Berlin: Springer, Berlin · Zbl 0896.53003
[2] Baird, P.; Fardoun, A.; Ouakkas, S., Liouville-type theorems for biharmonic maps from Riemannian manifolds, Adv. Calc. Var., 3, 49-68 (2010) · Zbl 1185.31004 · doi:10.1515/acv.2010.003
[3] Chang, SYA; Wang, L.; Yang, PC, A regularity theory of biharmonic maps, Commun. Pure Appl. Math., 52, 1113-1137 (1999) · Zbl 0953.58013 · doi:10.1002/(SICI)1097-0312(199909)52:9<1113::AID-CPA4>3.0.CO;2-7
[4] Chen, B-Y, Total Mean Curvature and Submanifolds of Finite Type (2015), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1326.53004
[5] Eells, J.; Lemaire, L., Another report on harmonic maps, Bull. Lond. Math. Soc., 20, 385-524 (1988) · Zbl 0669.58009 · doi:10.1112/blms/20.5.385
[6] Eells, J., Lemaire, L.: Selected topics in harmonic maps. In: CBMS Regional Conference Series in Mathematics, 50. American Mathematical Society, Providence, RI (1983) · Zbl 0515.58011
[7] Eells, J., Sampson, J.H.: Variational theory in fibre bundles. In: Proceedings of U.S.-Japan Seminar in Differential Geometry, Kyoto, pp. 22-33 (1965) · Zbl 0192.29801
[8] Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes Mathematics 5, New York (1999) · Zbl 0981.58006
[9] Hélein, F., Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris, Série I Math., 312, 591-596 (1991) · Zbl 0728.35015
[10] Hildebrandt, S.; Kaul, H.; Widman, O., An existence theory for harmonic mappings of Riemannian manifolds, Acta Math., 138, 1-16 (1977) · Zbl 0356.53015 · doi:10.1007/BF02392311
[11] Hong, MC; Thompson, B., Stability of the equator map for the Hessian energy, Proc. AMS, 135, 3163-3170 (2007) · Zbl 1220.35037 · doi:10.1090/S0002-9939-07-08950-2
[12] Hong, MC; Wang, CY, Regularity and relaxed problems of minimizing biharmonic maps into spheres, Calc. Var. Partial Differ. Equ., 23, 425-450 (2005) · Zbl 1073.58015 · doi:10.1007/s00526-004-0309-2
[13] Jäger, W.; Kaul, H., Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math., 343, 146-161 (1983) · Zbl 0516.35032
[14] Ku, YB, Interior and boundary regularity of intrinsic biharmonic maps to spheres, Pac. J. Math., 234, 43-67 (2008) · Zbl 1154.58306 · doi:10.2140/pjm.2008.234.43
[15] Jiang, GY, 2-harmonic maps and their first and second variation formulas, Chin. Ann. Math. Ser. A, 7, 7, 130-144 (1986) · Zbl 0596.53046
[16] Loubeau, E.; Oniciuc, C., The index of biharmonic maps in spheres, Compos. Math., 141, 729-745 (2005) · Zbl 1075.58014 · doi:10.1112/S0010437X04001204
[17] Montaldo, S.; Oniciuc, C., A short survey on biharmonic maps between riemannian manifolds, Rev. Un. Math. Argent., 47, 1-22 (2006) · Zbl 1140.58004
[18] Montaldo, S.; Oniciuc, C.; Ratto, A., Reduction methods for the bienergy, Révue Roumaine Math. Pures et Appliquées, 61, 261-292 (2016) · Zbl 1389.53011
[19] Montaldo, S.; Oniciuc, C.; Ratto, A., Rotationally symmetric maps between models, J. Math. Anal. Appl., 431, 494-508 (2015) · Zbl 1371.37025 · doi:10.1016/j.jmaa.2015.05.082
[20] Montaldo, S.; Ratto, A., A general approach to equivariant biharmonic maps, Med. J. Math., 10, 1127-1139 (2013) · Zbl 1268.58014
[21] Montaldo, S.; Ratto, A., Biharmonic submanifolds into ellipsoids, Monatshefte für Mathematik, 176, 589-601 (2015) · Zbl 1315.58012 · doi:10.1007/s00605-014-0684-5
[22] Rivière, T., Everywhere discontinuous harmonic maps into spheres, Acta. Math., 175, 197-226 (1995) · Zbl 0898.58011 · doi:10.1007/BF02393305
[23] Saliba, L.: Applications biharmoniques extrinsèques à valeurs dans une sphère. Thèse de Doctorat, Université de Bretagne Occidentale (2017)
[24] Uhlenbeck, K.: Regularity theorems for solutions of elliptic polynomial equations. In: Global Analysis Proceedings of Symposia in Pure Mathematics, Vol. XVI, Berkeley, CA. 1968, American Mathematical Society, Providence, RI, pp. 225-231 (1970) · Zbl 0216.38202
[25] Wang, CY, Biharmonic maps form \(\mathbb{R}^4\) into a Riemannian manifold, Math. Z., 247, 65-87 (2004) · Zbl 1064.58016 · doi:10.1007/s00209-003-0620-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.