×

Geodesics on \(\mathrm{SO}(n)\) and a class of spherically symmetric maps as solutions to a nonlinear generalised harmonic map problem. (English) Zbl 1400.35099

Summary: We address questions on existence, multiplicity as well as qualitative features including rotational symmetry for certain classes of geometrically motivated maps serving as solutions to the nonlinear system \[ \begin{cases} -\mathrm{div}[F^\prime(|x|,|\nabla u|^2) \nabla u] = F^\prime(|x|,|\nabla u|^2) |\nabla u|^2 u \quad & \text{in } \mathbb{X}^n, \\ |u| = 1 & \text{in } \mathbb{X}^n ,\\ u = \varphi & \text{on } \partial \mathbb{X}^n.\end{cases} \] Here \(\varphi \in \mathscr{C}^\infty(\partial \mathbb{X}^n, \mathbb{S}^{n-1})\) is a suitable boundary map, \(F^\prime\) is the derivative of \(F\) with respect to the second argument, \(u \in W^{1,p}(\mathbb{X}^n, \mathbb{S}^{n-1})\) for a fixed \(1<p<\infty\) and \(\mathbb{X}^n=\{x \in \mathbb{R}^n : a<|x|<b\}\) is a generalised annulus. Of particular interest are spherical twists and whirls, where following [M. S. Shahrokhi-Dehkordi and A. Taheri, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, No. 5, 1897–1924 (2009; Zbl 1172.74021)], a spherical twist refers to a rotationally symmetric map of the form \(u:x \mapsto \mathrm{Q}(|x|)x|x|^{-1}\) with \(\mathrm{Q}\) some suitable path in \(\mathscr{C}([a, b], \mathrm{SO}(n))\) and a whirl has a similar but more complex structure with only \(2\)-plane symmetries. We establish the existence of an infinite family of such solutions and illustrate an interesting discrepancy between odd and even dimensions.

MSC:

35J57 Boundary value problems for second-order elliptic systems
53C22 Geodesics in global differential geometry
58D19 Group actions and symmetry properties
22C05 Compact groups

Citations:

Zbl 1172.74021

References:

[1] F. Alouges and J. Ghidaglia, Minimizing Oseen-Frank energy for nematic liquid crystals: algorithms and numerical results, Annales de l’IHP Physique Théorique 66 (1977), 411-447. · Zbl 0911.35007
[2] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153-206. · Zbl 0756.46017 · doi:10.1007/BF02392449
[3] J.C. Bourgoin, The minimality of the map \(x/||x||\) for weighted energy, Calc. Var. Partial Differential Equations 25 (2006), 469-489. · Zbl 1091.58008
[4] H. Brezis and Y. Li, Topology and Sobolev spaces, J. Funct. Anal. 183 (2001), 321-369. · Zbl 1001.46019 · doi:10.1006/jfan.2000.3736
[5] L. Cesari, Optimization Theory and Applications: Problems with Ordinary Differential Equations, Applications of Mathematics, Vol. 17, Springer, 1983. · Zbl 0506.49001
[6] S. Day and A. Taheri, Stability of spherical harmonic twists, second variations and conjugate points on \(\SO(n)\), (2018). (submitted)
[7] S. Day and A. Taheri, A class of extremising sphere-valued maps with inherent maximal tori symmetries in \(\SO(n)\), Bound. Value Probl. (2017). · Zbl 1384.49005 · doi:10.1186/s13661-017-0917-3
[8] J. Eells and L. Lemaire, Two reports on harmonic maps, Bull. Lond. Math. Soc. 10 (1978), 1-68; 20 (1988), 385-524. · Zbl 0836.58012
[9] J.L. Ericksen, Inequalities in liquid crystal theory, Physics of Fluids 9 (1966), 1205-1207.
[10] M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations, Vol. I, II, Springer, Berlin, 1998. · Zbl 0914.49001
[11] R. Gulliver and J.M. Coron, Minimizing \(p\)-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989), 82-100. · Zbl 0677.58021
[12] F.B. Hang and F.H. Lin, Topology of Sobolev mappings, Math. Res. Lett. 8 (2001), 321-330. · Zbl 1049.46018 · doi:10.4310/MRL.2001.v8.n3.a8
[13] R. Hardt and F.H. Lin, Mappings minimizing the \({L}^p\) norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555-588. · Zbl 0646.49007
[14] F. Hélein and J.C. Wood, Harmonic maps, Handbook of Global Analysis, Elsevier, Amsterdam, 2008, 417-491. · Zbl 1236.58002
[15] M.C. Hong, On the minimality of the \(p\)-harmonic map \(x/| x|\colon \mathbb{B}^{n} → \mathbb{S}^{n-1}\), Calc. Var. Partial Differential Equations 13 (2001), 459-468. · Zbl 0999.58009
[16] F.H. Lin, A remark on the map \(x/|x|\), C.R. Acad. Sci. 305 (1987), 529-531. · Zbl 0652.58022
[17] S. Luckhaus, Partial H ölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), 349-367. · Zbl 0641.58012 · doi:10.1512/iumj.1988.37.37017
[18] C. Morris and A. Taheri, Annular rearrangements, incompressible axi-symmetric whirls and \(L^1\)-local minimisers of the distortion energy, NoDEA 25 (2018), Art. No. 2. · Zbl 1393.35037 · doi:10.1007/s00030-017-0485-3
[19] C. Morris and A. Taheri, Whirl mappings on generalised annuli and incompressible symmetric equilibria of the Dirichlet energy, J. Elasticity (2018). (to appear) · Zbl 1401.74043
[20] M.S. Shahrokhi-Dehkordi and A. Taheri, Generalised twists, \(\rom{SO}(n)\) and the \(p\)-energy over a space of measure preserving maps, Ann. Inst. H. Poincaré Anal. Non Linéaire (C) 26 (2009), 1897-1924. · Zbl 1172.74021
[21] M.S. Shahrokhi-Dehkordi and A. Taheri, Generalised twists, stationary loops, and the Dirichlet energy over a space of measure preserving maps, Calc. Var. Partial Differential Equations 35 (2009), 191-213. · Zbl 1160.49040 · doi:10.1007/s00526-008-0202-5
[22] L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 1996. · Zbl 0864.58015
[23] A. Taheri, Local minimizers and quasiconvexity – the impact of topology, Arch. Rational Mech. Anal. 176 (2005), 363-414. · Zbl 1073.49007
[24] A. Taheri, Homotopy classes of self-maps of annuli, generalised twists and spin degree, Arch. Rational Mech. Anal. 197 (2010), 239-270. · Zbl 1207.55004 · doi:10.1007/s00205-009-0280-3
[25] A. Taheri, Spherical twists, \(\rom{SO}(n)\) and the lifting of their twist paths to \({\rm Spin}(n)\) in low dimensions, Q. J. Math. 63 (2012), 723-751. · Zbl 1253.49003
[26] A. Taheri, Spherical twists, stationary paths and harmonic maps from generalised annuli into spheres, NoDEA 19 (2012), 79-95. · Zbl 1256.58004 · doi:10.1007/s00030-011-0119-0
[27] A. Taheri, Function Spaces and Partial Differential Equations, Vol. I, II, Oxford Lecture Series in Mathematics and its Applications, OUP, Oxford, 2015. · Zbl 1336.46002
[28] E.G. Virga, Variational Theories for Liquid Crystals, Applied Mathematics and Mathematical Computation, Vol. 8, Chapman & Hall, London, 1994. · Zbl 0814.49002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.