×

Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group. (English) Zbl 1418.53038

Summary: We present a neuro-mathematical model for geometrical optical illusions (GOIs), a class of illusory phenomena that consists in a mismatch of geometrical properties of the visual stimulus and its associated percept. They take place in the visual areas V1/V2 whose functional architecture have been modeled in previous works by Citti and Sarti as a Lie group equipped with a sub-Riemannian (SR) metric. Here we extend their model proposing that the metric responsible for the cortical connectivity is modulated by the modeled neuro-physiological response of simple cells to the visual stimulus, hence providing a more biologically plausible model that takes into account a presence of visual stimulus. Illusory contours in our model are described as geodesics in the new metric. The model is confirmed by numerical simulations, where we compute the geodesics via SR-Fast Marching.

MSC:

53C17 Sub-Riemannian geometry
78M99 Basic methods for problems in optics and electromagnetic theory

References:

[1] Agrachev, A. A.; Sachkov, Y. L., Control Theory From the Geometric Viewpoint (2004), Springer-Verlag · Zbl 1062.93001
[2] Ardentov, A. A.; Sachkov, Y. L., Conjugate points in nilpotent sub-Riemannian problem on the Engel group, J. Math. Sci., 195, 3, 369-390 (2013) · Zbl 1295.53023
[3] August, J.; Zucker, S. W., The curve indicator random field: curve organization via edge correlation, (Perceptual Organization for Artificial Vision Systems (2000), Springer), 265-288
[4] Barilari, D.; Boscain, U.; Gauthier, J., On 2-step, corank 2 nilpotent sub-Riemannian metrics, SIAM J. Control Optim., 50, 559-582 (2011) · Zbl 1243.53064
[5] Barles, G., Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et applications, vol. 17 (1994), Springer-Verlag: Springer-Verlag Berlin · Zbl 0819.35002
[6] Bekkers, E.; Duits, R.; Berendschot, T.; ter Haar Romeny, B., A multi-orientation analysis approach to retinal vessel tracking, J. Math. Imaging Vis., 49, 3, 583-610 (2014) · Zbl 1291.92075
[7] Bekkers, E. J.; Duits, R.; Mashtakov, A.; Sachkov, Y., Vessel tracking via sub-Riemannian geodesics on the projective line bundle, (Nielsen, F.; Barbaresco, F., Geometric Science of Information (2017)), 773-781 · Zbl 1428.53040
[8] Bekkers, E. J.; Duits, R.; Mashtakov, A.; Sanguinetti, G. R., A pde approach to data-driven sub-Riemannian geodesics in SE(2), SIAM J. Imaging Sci., 8, 4, 2740-2770 (2015) · Zbl 1336.58014
[9] Ben-Yosef, G.; Ben-Shahar, O., A tangent bundle theory for visual curve completion, IEEE Trans. Pattern Anal. Mach. Intell., 34, 1263-1280 (2012)
[10] Boscain, U.; Rossi, F., Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and lens spaces, SIAM J. Control Optim., 47, 4, 1851-1878 (2008) · Zbl 1170.53016
[11] Brockett, R. W., Control Theory and Singular Riemannian Geometry, 11-27 (1982), Springer: Springer New York · Zbl 0483.49035
[12] Butt, Y. A.; Sachkov, Y. L.; Bhatti, A. I., Cut locus and optimal synthesis in sub-Riemannian problem on the lie group sh(2), J. Dyn. Control Syst., 23, 1, 155-195 (2017) · Zbl 1431.49038
[13] Capogna, L.; Citti, G., Regularity for subelliptic pde through uniform estimates in multi-scale geometries, Bull. Math. Sci., 6, 2, 173-230 (2016) · Zbl 1357.35092
[14] Citti, G.; Sarti, A., A cortical based model of perceptual completion in the roto-translation space, J. Math. Imaging Vis., 24, 3, 307-326 (2006) · Zbl 1478.92100
[15] Coren, S.; Girgus, J. S., Seeing Is Deceiving: The Psychology of Visual Illusions (1978), Lawrence Erlbaum
[16] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Meteorol. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015
[17] Crandall, M. G.; Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277, 1, 1-42 (1983) · Zbl 0599.35024
[18] Daugman, J. G., Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, J. Opt. Soc. Am. A, 2, 7, 1160-1169 (1985)
[19] Day, R.; Dickinson, R., The components of the Poggendorff illusion, Br. J. Psychol., 67, 4, 537-552 (1976)
[20] DeAngelis, G. C.; Ohzawa, I.; Freeman, R. D., Receptive-field dynamics in the central visual pathways, Trends Neurosci., 18, 10, 451-458 (1995)
[21] Duits, R.; Meesters, S. P.L.; Mirebeau, J. M.; Portegies, J. M., Optimal paths for variants of the 2d and 3d reeds – shepp car with applications in image analysis, J. Math. Imaging Vis., 60, 6, 816-848 (2018) · Zbl 1398.65135
[22] Duits, R.; Felsberg, M.; Granlund, G.; ter Haar Romeny, B., Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group, Int. J. Comput. Vis., 72, 1, 79-102 (2007)
[23] Duits, R.; Franken, E., Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores part i: linear left-invariant diffusion equations on SE(2), Q. Appl. Math., 255-292 (2010) · Zbl 1202.35334
[24] Duits, R.; Franken, E., Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores part ii: nonlinear left-invariant diffusions on invertible orientation scores, Q. Appl. Math., 293-331 (2010) · Zbl 1205.35326
[25] Eagleman, D. M., Visual illusions and neurobiology, Nat. Rev. Neurosci., 2, 12, 920-926 (2001)
[26] Ehm, W.; Wackermann, J., Modeling geometric – optical illusions: a variational approach, J. Math. Psychol., 56, 6, 404-416 (2012)
[27] Ehm, W.; Wackermann, J., Geometric – optical illusions and Riemannian geometry, J. Math. Psychol., 71, 28-38 (2016) · Zbl 1354.91127
[28] Fermüller, C.; Malm, H., Uncertainty in visual processes predicts geometrical optical illusions, Vis. Res., 44, 7, 727-749 (2004)
[29] Franceschiello, B.; Sarti, A.; Citti, G., A neuro-mathematical model for geometrical optical illusions, J. Math. Imaging Vis., 60, 1, 94-108 (2017) · Zbl 1397.92110
[30] Ge, Z., Collapsing Riemannian metrics to Carnot-Caratheodory metrics and Laplacians to sub-Laplacians, Can. J. Math., 45, 3, 537-553 (1993) · Zbl 0797.58092
[31] Geisler, W. S.; Kersten, D., Illusions, perception and Bayes, Nat. Neurosci., 5, 6, 508-510 (2002)
[32] von Helmholtz, H.; Southall, J. P.C., Treatise on Physiological Optics, vol. 3 (2005), Courier Corporation
[33] Hering, H. E., Beiträge zur Physiologie, 1-5 (1861), W. Engelmann: W. Engelmann Leipzig
[34] Hladky, R. K.; Pauls, S. D., Constant mean curvature surfaces in sub-Riemannian geometry, J. Differ. Geom., 79, 1, 111-139 (2008) · Zbl 1156.53038
[35] Hoffman, W. C., Visual illusions of angle as an application of lie transformation groups, SIAM Rev., 13, 2, 169-184 (1971) · Zbl 0215.59302
[36] Hoffman, W. C., The visual cortex is a contact bundle, Appl. Math. Comput., 32, 2, 137-167 (1989) · Zbl 0676.92020
[37] Hubel, D. H.; Wiesel, T. N., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 160, 1, 106-154 (1962)
[38] Hubel, D. H.; Wiesel, T. N., Ferrier lecture: functional architecture of macaque monkey visual cortex, Proc. R. Soc. Lond. B, Biol. Sci., 198, 1130, 1-59 (1977)
[39] Jones, J. P.; Palmer, L. A., An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex, J. Neurophysiol., 58, 6, 1233-1258 (1987)
[40] Koenderink, J. J.; Van Doorn, A., Receptive field families, Biol. Cybern., 63, 4, 291-297 (1990) · Zbl 0696.92009
[41] Lee, T. S., Image representation using 2d Gabor wavelets, IEEE Trans. Pattern Anal. Mach. Intell., 18, 10, 959-971 (1996)
[42] Mashtakov, A.; Duits, R.; Sachkov, Y.; Bekkers, E. J.; Beschastnyi, I., Tracking of lines in spherical images via sub-Riemannian geodesics in so(3), J. Math. Imaging Vis., 58, 2, 239-264 (2017) · Zbl 1387.68222
[43] Mashtakov, A.; Ardentov, A.; Sachkov, Y., Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations, Numer. Math., Theory Methods Appl., 6, 95-115 (2013) · Zbl 1289.94013
[44] Mirebeau, J. M., Anisotropic fast-marching on cartesian grids using lattice basis reduction, SIAM J. Numer. Anal., 52, 4, 1573-1599 (2014) · Zbl 1312.65172
[45] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs (2002) · Zbl 1044.53022
[46] Monti, R., Distances, Boundaries and Surface Measures in Carnot-Carathéodory Spaces (2001)
[47] Murray, M. M.; Herrmann, C. S., Illusory contours: a window onto the neurophysiology of constructing perception, Trends Cogn. Sci., 17, 9, 471-481 (2013)
[48] Murray, M. M.; Wylie, G. R.; Higgins, B. A.; Javitt, D. C.; Schroeder, C. E.; Foxe, J. J., The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging, J. Neurosci., 22, 12, 5055-5073 (2002)
[49] Nagel, A.; Stein, E. M.; Wainger, S., Balls and metrics defined by vector fields I: basic properties, Acta Math., 155, 1, 103-147 (1985) · Zbl 0578.32044
[50] J.J. Oppel, Über geometrisch-optische Täuschungen, Jahresbericht des physikalischen Vereins zu Frankfurt am Main, 1855.; J.J. Oppel, Über geometrisch-optische Täuschungen, Jahresbericht des physikalischen Vereins zu Frankfurt am Main, 1855.
[51] Petitot, J., Neurogéométrie de la vision, Editions Ecole Polytechnique (2008)
[52] Petitot, J.; Tondut, Y., Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, Math. Inform. Sci. Hum., 145, 5-102 (1999)
[53] Petkov, N.; Kruizinga, P., Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells, Biol. Cybern., 76, 2, 83-96 (1997) · Zbl 0866.92005
[54] Robinson, J. O., The Psychology of Visual Illusion (2013), Courier Corporation
[55] Romeny, B. M.H., Front-End Vision and Multi-Scale Image AnalysisMulti-Scale Computer Vision Theory and Applications, Written in Mathematica (2008), Springer
[56] Sachkov, Y., Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane, ESAIM Control Optim. Calc. Var., 17, 293-321 (2011) · Zbl 1251.49057
[57] Sanguinetti, G.; Bekkers, E.; Duits, R.; Janssen, M. H.; Mashtakov, A.; Mirebeau, J. M., Sub-Riemannian fast marching in SE(2), (Iberoamerican Congress on Pattern Recognition (2015)), 366-374
[58] Sarti, A.; Citti, G.; Petitot, J., The symplectic structure of the primary visual cortex, Biol. Cybern., 98, 1, 33-48 (2008) · Zbl 1148.92012
[59] Sethian, J. A., Level Set Methods and Fast Marching Methods (1999), Cambridge University Press · Zbl 0929.65066
[60] Smith, D. A., A descriptive model for perception of optical illusions, J. Math. Psychol., 17, 1, 64-85 (1978)
[61] Song, C.; Schwarzkopf, D. S.; Lutti, A.; Li, B.; Kanai, R.; Rees, G., Effective connectivity within human primary visual cortex predicts interindividual diversity in illusory perception, J. Neurosci., 33, 48, 18781-18791 (2013)
[62] Talasli, U.; Inan, A. B., Applying Emmett’s Law to the Poggendorff illusion, Front. Human Neurosci., 9 (2015)
[63] Vershik, A. M.; Gershkovich, V. Y., Nonholonomic problems and the theory of distributions, Acta Appl. Math., 12, 2, 181-209 (1988) · Zbl 0666.58004
[64] Von Der Heyclt, R.; Peterhans, E.; Baurngartner, G., Illusory contours and cortical neuron responses, Science, 224 (1984)
[65] Wade, N., The Art and Science of Visual Illusions (1982), Routledge Kegan & Paul
[66] Weintraub, D.; Krantz, D., The Poggendorff illusion: amputations, rotations, and other perturbations, Atten. Percept. Psychophys., 10, 4, 257-264 (1971)
[67] Weiss, Y.; Simoncelli, E. P.; Adelson, E. H., Motion illusions as optimal percepts, Nat. Neurosci., 5, 6, 598-604 (2002)
[68] Westheimer, G., Illusions in the spatial sense of the eye: geometrical – optical illusions and the neural representation of space, Vis. Res., 48, 20, 2128-2142 (2008)
[69] Young, R. A., The Gaussian derivative model for spatial vision: I. retinal mechanisms, Spat. Vis., 2, 4, 273-293 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.