×

A cortical-inspired geometry for contour perception and motion integration. (English) Zbl 1291.92074

Summary: In this paper we develop a geometrical model of functional architecture for the processing of spatio-temporal visual stimuli. The model arises from the properties of the receptive field linear dynamics of orientation and speed-selective cells in the visual cortex, that can be embedded in the definition of a geometry where the connectivity between points is driven by the contact structure of a 5D manifold. Then, we compute the stochastic kernels that are the approximations of two Fokker Planck operators associated to the geometry, and implement them as facilitation patterns within a neural population activity model, in order to reproduce some psychophysiological findings about the perception of contours in motion and trajectories of points found in the literature.

MSC:

92C55 Biomedical imaging and signal processing

References:

[1] Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2(2), 284-299 (1985) · doi:10.1364/JOSAA.2.000284
[2] Ahmed, B., Cordery, P.M., McLelland, D., Bair, W., Krug, K.: Long-range clustered connections within extrastriate visual area V5/MT of the rhesus macaque. Cereb. Cortex 22(1), 60-73 (2012) · doi:10.1093/cercor/bhr072
[3] Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image recostruction. Interfaces Free Bound. 5(1), 63-81 (2003) · Zbl 1029.49037 · doi:10.4171/IFB/72
[4] Angelucci, A., Levitt, J.B., Walton, E.J.S., Hupe, J., Bullier, J., Lund, J.S.: Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22(19), 8633-8646 (2002)
[5] August, J.; Zucker, S. W.; Boyer, K. (ed.); Sarkar, S. (ed.), The curve indicator random field: curve organization via edge correlation, 265-288 (2000), Dordrecht · doi:10.1007/978-1-4615-4413-5_15
[6] August, J., Zucker, S.W.: Sketches with curvature: the curve indicator random field and Markov processes. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 387-400 (2003) · doi:10.1109/TPAMI.2003.1190567
[7] Boscain, U., Duits, R., Rossi, F., Sachkov, Y.: Curve cuspless reconstruction via sub-Riemannian geometry (2012). arXiv:1203.3089 · Zbl 1381.49003
[8] Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112-2127 (1997)
[9] Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups vol. 2. Birkhäuser, Basel (2012) · Zbl 1245.60001 · doi:10.1007/978-0-8176-4944-9
[10] Chisum, H.J., Mooser, F., Fitzpatrick, D.: Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23(7), 2947-2960 (2003)
[11] Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307-326 (2006) · Zbl 1478.92100 · doi:10.1007/s10851-005-3630-2
[12] Cocci, G., Barbieri, D., Sarti, A.: Spatio-temporal receptive fields of cells in V1 are optimally shaped for stimulus velocity estimation. J. Opt. Soc. Am. A 29(1), 130-138 (2012) · doi:10.1364/JOSAA.29.000130
[13] Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160-1169 (1985) · doi:10.1364/JOSAA.2.001160
[14] DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J. Neurophysiol. 69(4), 1091-1117 (1993)
[15] Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 68, 255-292 (2010) · Zbl 1202.35334
[16] Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part II: nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. 68, 293-331 (2010) · Zbl 1205.35326
[17] Duits, R., van Almsick, M.: The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D Euclidean motion group. Q. Appl. Math. 66, 27-67 (2008) · Zbl 1153.60040
[18] Duits, R., Führ, H., Janssen, B., Bruurmijn, M., Florack, L., Van Assen, H.: Evolution equations on Gabor transforms and their applications (2011). arXiv:1110.6087 · Zbl 1296.35204
[19] Ermentrout, G.B., Cowan, J.D.: Large scale spatially organized activity in neural nets. SIAM J. Appl. Math. 38(1), 1-21 (1980) · Zbl 0448.92008 · doi:10.1137/0138001
[20] Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local association field. Vis. Res. 33, 173-193 (1993) · doi:10.1016/0042-6989(93)90156-Q
[21] Folland, G.B.: Harmonic Analysis on Phase Space. Princeton University Press, Princeton (1989) · Zbl 0682.43001
[22] Geiges, H.: An Introduction to Contact Topology. Cambridge University Press, Cambridge (2008) · Zbl 1153.53002 · doi:10.1017/CBO9780511611438
[23] Geisler, W.S.: Motion streaks provide a spatial code for motion direction. Nature 400(6739), 65-69 (1999) · doi:10.1038/21886
[24] Graham, N.V.: Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): useful additions of the last 25 years. Vis. Res. 51, 1397-1430 (2011) · doi:10.1016/j.visres.2011.02.007
[25] Grzywacz, N.M., Watamaniuk, S.N.J., McKee, S.P.: Temporal coherence theory for the detection and measurement of visual motion. Vis. Res. 35(22), 3183-3203 (1995) · doi:10.1016/0042-6989(95)00102-6
[26] Hladky, R.K., Pauls, S.D.: Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model. J. Math. Imaging Vis. 36, 1-27 (2010) · Zbl 1490.53047 · doi:10.1007/s10851-009-0167-9
[27] Hoffman, W.C.: The lie algebra of visual perception. J. Math. Psychol. 3, 65-98 (1966) · Zbl 0136.41803 · doi:10.1016/0022-2496(66)90005-8
[28] Hoffman, W.C.: The visual cortex is a contact bundle. Appl. Math. Comput. 32, 137-167 (1989) · Zbl 0676.92020 · doi:10.1016/0096-3003(89)90091-X
[29] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119(1), 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[30] Hubel, D.H.: Eye, Brain and Vision. Scientific American Library, New York (1988)
[31] Hubel, D.H., Wiesel, T.N.: Ferrier lecture: functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B, Biol. Sci. 198(1130), 1-59 (1977) · doi:10.1098/rspb.1977.0085
[32] Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233-1258 (1987)
[33] Kisvarday, Z.F., Toth, E., Rausch, M., Eysel, U.T.: Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex 7(7), 605-618 (1997) · doi:10.1093/cercor/7.7.605
[34] Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system. Biol. Cybern. 55, 367-375 (1987) · Zbl 0617.92024 · doi:10.1007/BF00318371
[35] Ledgeway, T., Hess, R.F., Geisler, W.S.: Grouping local orientation and direction signals to extract spatial contours: empirical tests of “association field” models of contour integration. Vis. Res. 45(19), 2511-2522 (2005) · doi:10.1016/j.visres.2005.04.002
[36] Lee, T.S., Nguyen, M.: Dynamics of subjective contour formation in the early visual cortex. Proc. Natl. Acad. Sci. USA 98(4), 1907-1911 (2001) · doi:10.1073/pnas.98.4.1907
[37] Lorenceau, J., Alais, D.: Form constraints in motion binding. Nat. Neurosci. 4(7), 745-751 (2001) · doi:10.1038/89543
[38] Malach, R., Schirman, T.D., Harel, M., Tootell, R.B., Malonek, D.: Organization of intrinsic connections in owl monkey area MT. Cereb. Cortex 7(4), 386-393 (1997) · doi:10.1093/cercor/7.4.386
[39] Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. AMS, Providence (2002) · Zbl 1044.53022
[40] Mumford, D.; Bajaj, C. L. (ed.), Elastica and computer vision, 491-506 (1994), Berlin · Zbl 0798.53003 · doi:10.1007/978-1-4612-2628-4_31
[41] Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103-147 (1985) · Zbl 0578.32044 · doi:10.1007/BF02392539
[42] Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation and Depth. Lecture Notes in Computer Science, vol. 662. Springer, Berlin (1993) · Zbl 0801.68171 · doi:10.1007/3-540-56484-5
[43] Øksendal, B.: Stochastic Differential Equations: an Introduction with Applications. Springer, Berlin (2010) · Zbl 1025.60026
[44] Olson, I.R., Gatenby, J.C., Leung, H.C., Skudlarski, P., Gore, J.C.: Neuronal representation of occluded objects in the human brain. Neuropsychologia 42(1), 95-104 (2004) · doi:10.1016/S0028-3932(03)00151-9
[45] Pan, Y., Chen, M., Yin, J., An, X., Zhang, X., Lu, Y., Gong, H., Li, W., Wang, W.: Equivalent representation of real and illusory contours in macaque V4. J. Neurosci. 32(20), 6760-6770 (2012) · doi:10.1523/JNEUROSCI.6140-11.2012
[46] Pauls, S.D., Hladky, R.K.: Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model. J. Math. Imaging Vis. 36(1), 563-594 (2010) · Zbl 1490.53047
[47] Petitot, J., Tondut, Y.: Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Math. Sci. Hum. 145, 5-101 (1999)
[48] Petkov, N., Subramanian, E.: Motion detection, noise reduction, texture suppression and contour enhancement by spatiotemporal Gabor filters with surround inhibition. Biol. Cybern. 97(5-6), 423-439 (2007) · Zbl 1248.94018 · doi:10.1007/s00422-007-0182-0
[49] Rainville, S.J.M., Wilson, H.R.: Global shape coding for motion-defined radial-frequency contours. Vis. Res. 45(25-26), 3189-3201 (2005) · doi:10.1016/j.visres.2005.06.033
[50] Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88(1), 455-463 (2002)
[51] Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, Berlin (2004) · Zbl 1096.62003 · doi:10.1007/978-1-4757-4145-2
[52] Roerig, B., Kao, J.P.: Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. J. Neurosci. 19(24) (1999)
[53] Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent lie groups. Acta Math. 137, 247-320 (1977) · Zbl 0346.35030 · doi:10.1007/BF02392419
[54] Sabinin, L.V.: Smooth Quasigroups and Loops. Kluwer, Dordrecht (1999) · Zbl 0939.20064 · doi:10.1007/978-94-011-4491-9
[55] Sanguinetti, G., Citti, G., Sarti, A.: Image completion using a diffusion driven mean curvature flowin a sub-Riemannian space. In: VISAPP 2008, vol. 2, pp. 46-53 (2008) · Zbl 0156.10701
[56] Sanguinetti, G., Citti, G., Sarti, A.: A model of natural image edge co-occurrence in the rototranslation group. J. Vis. 10(14) (2010)
[57] Scholl, B.J., Pylyshyn, Z.W.: Tracking multiple items through occlusion: clues to visual objecthood. Cogn. Psychol. 38(2), 259-290 (1999) · doi:10.1006/cogp.1998.0698
[58] Sorba, P.: The Galilei group and its connected subgroups. J. Math. Phys. 17(6), 941-953 (1976) · Zbl 0367.22026 · doi:10.1063/1.523021
[59] Verghese, P., McKee, S.P.: Predicting future motion. J. Vis. 2(5) (2002)
[60] Verghese, P., Watamaniuk, S.N.J., McKee, S.P., Grzywacz, N.M.: Local motion detectors cannot account for the detectability of an extended trajectory in noise. Vis. Res. 39(1), 19-30 (1999) · doi:10.1016/S0042-6989(98)00033-9
[61] Verghese, P., McKee, S.P., Grzywacz, N.M.: Stimulus configuration determines the detectability of motion signals in noise. J. Opt. Soc. Am. A 17(9), 1525-1534 (2000) · doi:10.1364/JOSAA.17.001525
[62] Watamaniuk, S.N.J.: The predictive power of trajectory motion. Vis. Res. 45(24), 2993-3003 (2005) · doi:10.1016/j.visres.2005.07.027
[63] Watamaniuk, S.N.J., MkKee, S.P.: Seeing motion behind occluders. Nature 377(6551), 729-730 (1995) · doi:10.1038/377729a0
[64] Watamaniuk, S.N.J., McKee, S.P., Grzywacz, N.M.: Detecting a trajectory embedded in random-direction motion noise. Vis. Res. 35(1), 65-77 (1995) · doi:10.1016/0042-6989(94)E0047-O
[65] Weliky, M., Bosking, W.H., Fitzpatrck, D.: A systematic map of direction preference in primary visual cortex. Nature 379(6567), 725-728 (1996) · doi:10.1038/379725a0
[66] Whitaker, D., Levi, D.M., Kennedy, G.J.: Integration across time determines path deviation discrimination for moving objects. PLoS ONE 3(4) (2008)
[67] Williams, L. R.; Jacobs, D. W., Stochastic completion fields (1995)
[68] Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1-24 (1972) · doi:10.1016/S0006-3495(72)86068-5
[69] Wu, W., Tiesinga, P.H., Tucker, T.R., Mitroff, S.R., Fitzpatrick, D.: Dynamics of population response to changes of motion direction in primary visual cortex. J. Neurosci. 31(36), 12767-12777 (2011) · doi:10.1523/JNEUROSCI.4307-10.2011
[70] Zucker, S. W.; Paragios, N. (ed.); Chen, Y. (ed.); Faugeras, O. (ed.), Differential geometry from the Frenet point of view: boundary detection, stereo, texture and color, 357-373 (2006), New York · doi:10.1007/0-387-28831-7_22
[71] Zweck, J.W., Williams, L.R.: Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. J. Math. Imaging Vis. 21(2), 135-154 (2004) · Zbl 1433.68525 · doi:10.1023/B:JMIV.0000035179.47895.bc
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.