×

Single-user MIMO system, Painlevé transcendents, and double scaling. (English) Zbl 1421.94027

Summary: In this paper, we study a particular Painlevé V (denoted \(\mathrm{P}_{\mathrm{V}}\)) that arises from multi-input-multi-output wireless communication systems. Such \(P_{V}\) appears through its intimate relation with the Hankel determinant that describes the moment generating function (MGF) of the Shannon capacity. This originates through the multiplication of the Laguerre weight or the gamma density \(x^{\alpha}e^{-x}\;, x > 0\), for \(\alpha > -1\) by \((1 + x/t)^{\lambda}\; \text{with}\; t > 0\) a scaling parameter. Here the \(\lambda\) parameter “generates” the Shannon capacity; see Y. Chen and M. R. McKay [IEEE Trans. Inf. Theory 58, No. 7, 4594–4634 (2012; Zbl 1365.94138)]. It was found that the MGF has an integral representation as a functional of \(y(t)\) and \(y'(t)\), where \(y(t)\) satisfies the “classical form” of \(\mathrm{P}_{\mathrm{V}}\).
In this paper, we consider the situation where \(n\), the number of transmit antennas, (or the size of the random matrix), tends to infinity and the signal-to-noise ratio, \(P\), tends to infinity such that \(s = 4n^{2}/P\) is finite. Under such double scaling, the MGF, effectively an infinite determinant, has an integral representation in terms of a “lesser” \(P_{{III}}\). We also consider the situations where \(\alpha = k + 1 / 2\), \(k \in \mathbb{N}\), and \(\alpha \in \{0, 1, 2, \dots\}\), \(\lambda \in \{1, 2, \dots\}\), linking the relevant quantity to a solution of the two-dimensional sine-Gordon equation in radial coordinates and a certain discrete Painlevé-II. From the large \(n\) asymptotic of the orthogonal polynomials, which appears naturally, we obtain the double scaled MGF for small and large \(s\), together with the constant term in the large \(s\) expansion. With the aid of these, we derive a number of cumulants and find that the capacity distribution function is non-Gaussian.{
©2017 American Institute of Physics}

MSC:

94A40 Channel models (including quantum) in information and communication theory
94A24 Coding theorems (Shannon theory)
81R12 Groups and algebras in quantum theory and relations with integrable systems

Citations:

Zbl 1365.94138

Software:

DLMF

References:

[1] Basor, E.; Chen, Y., Perturbed Laguerre unitary ensembles, Hankel determinants, and information theory, Math. Methods Appl. Sci., 38, 4840-4851 (2015) · Zbl 1357.94046 · doi:10.1002/mma.3399
[2] Barashenkov, I. V.; Pelinovsky, D. E., Exact vortex solutions of the complex sine-Gordon theory on the plane, Phys. Lett. B, 436, 117-124 (1998) · doi:10.1016/s0370-2693(98)00841-7
[3] Chen, M.; Chen, Y., Singular linear statistics of the Laguerre unitary ensemble and Painlevé. III. Double scaling analysis, J. Math. Phys., 56, 063506 (2015) · Zbl 1351.33019 · doi:10.1063/1.4922620
[4] Chen, M.; Chen, Y.; Fan, E. G., Perturbed Hankel determinant, correlation function and Painlevé equations, J. Math. Phys., 57, 023501 (2016) · Zbl 1338.33020 · doi:10.1063/1.4939276
[5] Casini, H.; Fosco, C. D.; Huerta, M., Entanglement and alpha entropies for massive Dirac field in two dimensions, J. Stat. Mech.: Theory Exp., 2005, P07007 · doi:10.1088/1742-5468/2005/07/p07007
[6] Chen, Y.; Haq, N. S.; McKay, M. R., Random matrix models, double-time Painlevé equations, and wireless relaying, J. Math. Phys., 54, 063506 (2013) · Zbl 1284.94007 · doi:10.1063/1.4808081
[7] Chen, Y.; Ismail, H. E. M., Thermodynamic relations of the Hermitian matrix ensembles, J. Phys. A: Math. Gen., 30, 6633-6654 (1997) · Zbl 1042.82550 · doi:10.1088/0305-4470/30/19/006
[8] Chen, Y.; Its, A., Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, J. Approximation Theory, 162, 270-297 (2010) · Zbl 1189.33035 · doi:10.1016/j.jat.2009.05.005
[9] Chen, Y.; Lawrence, N., On the linear statistics of Hermitian random matrices, J. Phys. A: Math. Gen., 31, 1141-1152 (1998) · Zbl 0920.62065 · doi:10.1088/0305-4470/31/4/005
[10] Chen, Y.; McKay, M. R., Coulomb fluid, Painlevé transcendents and the information theory of MIMO systems, IEEE Trans. Inf. Theory, 58, 4594-4634 (2012) · Zbl 1365.94138 · doi:10.1109/tit.2012.2195154
[11] Chen, Y.; McKay, M. R., Perturbed Hankel determinants: Applications to the information theory of MIMO wireless communications (2010)
[12] Clarkson, P. A., The third Painlevé equation and associated special polynomials, J. Phys. A, 36, 9507-9532 (2003) · Zbl 1046.33015 · doi:10.1088/0305-4470/36/36/306
[13] Clarkson, P. A., Special polynomials associated with rational solutions of the fifth Painlevé equation, J. Comput. Appl. Math., 178, 111-129 (2005) · Zbl 1077.33035 · doi:10.1016/j.cam.2004.04.015
[14] Dyson, F. J., Statistical theory of energy levels of complex systems I-III, J. Math. Phys., 3, 140-175 (1962) · Zbl 0105.41604 · doi:10.1063/1.1703773
[15] Forrester, P. J.; Ormerod, C. M., Differential equations for deformed Laguerre polynomials, J. Approximation Theory, 162, 653-677 (2010) · Zbl 1200.34112 · doi:10.1016/j.jat.2009.07.010
[16] Forrester, P. J.; Witte, N. S., Distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble Kyushu, J. Math., 61, 457-526 (2007) · Zbl 1145.15014 · doi:10.2206/kyushujm.61.457
[17] Foschini, G. J.; Gans, M. J., On limits of wireless communications in a fading environment when using multiple antennas, Wireless Pers. Commun., 6, 311-335 (1998) · doi:10.1023/a:1008889222784
[18] Forrester, P. J.; Witte, N. S., Boundary conditions associated with the Painlevé III′ and V evaluations of some random matrix averages, J. Phys. A: Math. Gen., 39, 8983-8995 (2006) · Zbl 1098.15017 · doi:10.1088/0305-4470/39/28/s13
[19] Gromak, V. I.; Laine, I.; Shimomura, S., Painlevé Differential Equations in the Complex Plane (2002) · Zbl 1043.34100
[20] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007) · Zbl 1208.65001
[21] Hachem, W.; Khorunzhiy, O.; Loubaton, P.; Najim, J.; Pastur, L., A new approach for mutual information analysis of large dimensional multi-antenna channels, IEEE Trans. Inf. Theory, 54, 3987-4004 (2008) · Zbl 1322.94003 · doi:10.1109/tit.2008.928229
[22] Hisakado, M., Unitary matrix models and Painlevé III, Mod. Phys. Lett. A, 11, 3001-3010 (1996) · Zbl 1022.81739 · doi:10.1142/s0217732396002976
[23] Jimbo, M.; Miwa, T., Monodromy perserving deformation of linear ordinary differential equations with rational coefficients, II, Phys. D, 2, 407-448 (1981) · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-x
[24] Jimbo, M., Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci., 18, 1137-1161 (1982) · Zbl 0535.34042 · doi:10.2977/prims/1195183300
[25] Kajiwara, K.; Masuda, T., On the Umemura polynomials for the Painlevé III equation, Phys. Lett. A, 260, 462-467 (1999) · Zbl 0939.34074 · doi:10.1016/s0375-9601(99)00577-0
[26] Kazakopoulos, P.; Mertikopoulos, P.; Moustakas, A. L.; Caire, G., Living at the edge: A large deviations approach to the outage MIMO capacity, IEEE Trans. Inf. Theory, 57, 1984-2007 (2011) · Zbl 1366.94376 · doi:10.1109/tit.2011.2112050
[27] McKay, M. R.; Collings, I. B., General capacity bounds for spatially correlated Rician MIMO channels, IEEE Trans. Inf. Theory, 51, 3121-3145 (2005) · Zbl 1310.94073 · doi:10.1109/tit.2005.853325
[28] Mezzadri, F.; Mo, M. Y., On an average over the Gaussian unitary ensemble, Int. Math. Res. Not., 2009, 3486-3515 · Zbl 1178.15022 · doi:10.1093/imrn/rnp062
[29] Milne, A. E.; Clarkson, P. A.; Bassom, A. P., Backlund transformations and solution Hierarchies for the third Painlevé equation, Stud. Appl. Math., 98, 139-194 (1997) · Zbl 0878.34006 · doi:10.1111/1467-9590.00044
[30] Murata, Y., Classical solutions of the third Painleve equation, Nagoya Math. J., 139, 37-65 (1995) · Zbl 0846.34002 · doi:10.1017/s0027763000005298
[31] Normand, J. M., Calculation of some determinants using the s-shifted factorial, J. Phys. A, 37, 5737-5762 (2004) · Zbl 1052.65040 · doi:10.1088/0305-4470/37/22/003
[32] Okamoto, K., On the τ-function of the Painlevé equations, Phys. D, 2, 525-535 (1981) · Zbl 1194.34171 · doi:10.1016/0167-2789(81)90026-9
[33] Olver, F. W. J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010) · Zbl 1198.00002
[34] Osipov, V. A.; Kanzieper, E., Are bosonic replicas faulty?, Phys. Rev. Lett., 99, 050602 (2007) · doi:10.1103/physrevlett.99.050602
[35] Passemier, D.; Mckay, M. R.; Chen, Y., Asymptotic linear spectral statistics for spiked Hermitian random matrix models, J. Stat. Phys., 160, 120-150 (2015) · Zbl 1362.60004 · doi:10.1007/s10955-015-1233-x
[36] Periwal, V.; Shevitz, D., Unitary-matrix models as exactly solvable string theories, Phys. Rev. Lett., 64, 1326-1329 (1990) · doi:10.1103/physrevlett.64.1326
[37] Szegö, G., Orthogonal Polynomials (1939) · JFM 65.0278.03
[38] Smith, P. J.; Roy, S.; Shafi, M., Capacity of MIMO systems with semicorrelated flat fading, IEEE Trans. Inf. Theory, 49, 2781-2788 (2003) · Zbl 1301.94057 · doi:10.1109/tit.2003.817472
[39] Telatar, I. E., Capacity of multi-antenna Gaussian channels, Eur. Trans. Telecommun., 10, 585-595 (1999) · doi:10.1002/ett.4460100604
[40] Tracy, C. A.; Widom, H., Level spacing distributions and the Bessel kernel, Commun. Math. Phys., 160, 289-309 (1994) · Zbl 0808.35145 · doi:10.1007/bf02099779
[41] Tracy, C. A.; Widom, H., Fredholm determinants, differential equations and matrix models, Commun. Math. Phys., 163, 33-72 (1994) · Zbl 0813.35110 · doi:10.1007/bf02101734
[42] Tracy, C. A.; Widom, H., Random unitary matrices, permutations and Painlevé, Commun. Math. Phys., 207, 665-685 (1999) · Zbl 0965.60028 · doi:10.1007/s002200050741
[43] Tulino, A. M.; Verdú, S., Asymptotic outage capacity of multiantenna channels, 825-828 (2005)
[44] Voros, A., Spectral functions, special functions, and the Selberg zeta function, Commun. Math. Phys., 110, 439-465 (1987) · Zbl 0631.10025 · doi:10.1007/bf01212422
[45] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1958) · JFM 45.0433.02
[46] Xu, S. X.; Dai, D.; Zhao, Y. Q., Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble, Commun. Math. Phys., 332, 1257-1296 (2014) · Zbl 1303.15047 · doi:10.1007/s00220-014-2131-9
[47] Zheng, L.; Tse, C. N. D., Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels, IEEE Trans. Inf. Theory, 49, 1073-1096 (2003) · Zbl 1063.94531 · doi:10.1109/tit.2003.810646
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.