×

Comparison of two projection methods for the solution of frictional contact problems. (English) Zbl 1524.74363

Summary: Frictional contact problems in linear elasticity are considered in this paper. The contact constraint is imposed in the weak sense using the fixed point method, which leads to a variational equation problem. For solving such a nonlinear variational problem, we study two projection methods using different self-adaptive rules. Based on the self-adaptive projection method, we propose a modified self-adaptive rule which is more effective to update the parameter. The methods can be implemented easily in conjunction with the boundary element method for the solution. Numerical experiments are reported to illustrate theoretical results.

MSC:

74M10 Friction in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
76M15 Boundary element methods applied to problems in fluid mechanics
76M99 Basic methods in fluid mechanics

References:

[1] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (2008) · Zbl 1139.65050
[2] Han, W.M.: A Posteriori Error Analysis Via Duality Theory. Springer, New York (2005) · Zbl 1081.65065
[3] Stadler, G.: Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM J. Optim. 15, 39-62 (2004) · Zbl 1106.90078 · doi:10.1137/S1052623403420833
[4] De Los Reyes, J.C., Hintermüller, M.: A duality based semismooth Newton framework for solving variational inequalities of the second kind. Interfaces Free Bound. 13, 437-462 (2011) · Zbl 1247.65089 · doi:10.4171/IFB/267
[5] Bostan, V., Han, W.M.: A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Eng. 195, 1252-1274 (2006) · Zbl 1115.74047 · doi:10.1016/j.cma.2005.06.003
[6] Denkowski, Z., Migórski, S., Ochal, A.: A class of optimal control problems for piezoelectric frictional contact models. Nonlinear Anal., Real World Appl. 12, 1883-1895 (2011) · Zbl 1217.49008 · doi:10.1016/j.nonrwa.2010.12.006
[7] Touzaline, A.: Optimal control of a frictional contact problem. Acta Math. Appl. Sin. Engl. Ser. 31, 991-1000 (2015) · Zbl 1338.49012 · doi:10.1007/s10255-015-0519-8
[8] Wang, F., Han, W.M., Cheng, X.L.: Discontinuous Galerkin methods for solving a quasistatic contact problem. Numer. Math. 126, 771-800 (2014) · Zbl 1431.74106 · doi:10.1007/s00211-013-0574-0
[9] Zhang, S.G., Li, X.L.: A self-adaptive projection method for contact problems with the BEM. Appl. Math. Model. 55, 145-159 (2018) · Zbl 1480.74235 · doi:10.1016/j.apm.2017.10.022
[10] Zhang, S.G., Li, X.L., Ran, R.S.: Self-adaptive projection and boundary element methods for contact problems with Tresca friction. Commun. Nonlinear Sci. Numer. Simul. 68, 72-85 (2019) · Zbl 1508.74067 · doi:10.1016/j.cnsns.2018.05.001
[11] He, B.S., Liao, L.Z., Wang, S.L.: Self-adaptive operator splitting methods for monotone variational inequalities. Numer. Math. 94, 715-737 (2003) · Zbl 1033.65047 · doi:10.1007/s00211-002-0408-y
[12] Bnouhachem, A.: An inexact implicit method for general mixed variational inequalities. J. Comput. Appl. Math. 200, 417-426 (2007) · Zbl 1115.49027 · doi:10.1016/j.cam.2006.01.005
[13] Ge, Z.L., Han, D.R.: Self-adaptive implicit methods for monotone variant variational inequalities. J. Inequal. Appl. 2009, Article ID 458134 (2009) · Zbl 1180.49009 · doi:10.1155/2009/458134
[14] Chouly, F.: A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51, 1295-1307 (2013) · Zbl 1268.74033 · doi:10.1137/12088344X
[15] Chouly, F.: An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411, 329-339 (2014) · Zbl 1311.74112 · doi:10.1016/j.jmaa.2013.09.019
[16] Zhang, S.G., Li, X.L.: An augmented Lagrangian method for the Signorini boundary value problem with BEM. Bound. Value Probl. 2016, 62 (2016) · Zbl 1349.35137 · doi:10.1186/s13661-016-0570-2
[17] Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin (2008) · Zbl 1157.65066 · doi:10.1007/978-3-540-68545-6
[18] Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008) · Zbl 1153.65302 · doi:10.1007/978-0-387-68805-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.