×

Inequalities involving generalized Jacobian elliptic functions. (English) Zbl 1306.33026

The author considers generalized Jacobian elliptic functions. The inverse function of the generalized Jacobian elliptic sine function \(sn^{-1}_{p,q}(x)\) is defined as \( sn^{-1}_{p,q}(x)=\int_0^x((1-w^q)(1-k^qw^q))^{-1/p}dw\) and subordinated functions to \(sn_{p,q}\) are defined as \(\displaystyle cn_{p,q}(t)= (1-sn_{p,q}^q(t))^{1/p}\), \(dn_{p,q}(t)= (1-k^qsn_{p,q}^q(t))^{1/p}\). Assume that \(p\) and \(q\) satisfy the conditions \(p,q>1\) and \(p(q+1)-2q>0\), then \[ \frac1{sn_{p,q}(t)}=R_N(cn_{p,q}^p(t),dn_{p,q}^p(t),1), \] where \(R_N=R_{-1/q}(b;X)\) is the \(R\)-hypergeometric function and \(b=(1/p,1/p,1+1/q-2/p)\) (Theorem 3.1). Certain inequalities involving generalized Jacobian elliptic functions are obtained in Theorem 3.2. If \(p\) and \(q\) satisfy conditions of Theorem 3.1, then the function \(sn_{p,q}(t)\) is multiplicatively concave (\(f\) is multiplicatively concave if \(\displaystyle f(x^\alpha y^\beta)\geq f(x)^\alpha f(y)^\beta)\) for \(\alpha+\beta=1\)) (Theorem 3.6). In Theorem 3.9 it is proved that \(sn_{p,q}(t)/t>1/sn^{-1}_{p,q}(t)\).

MSC:

33E05 Elliptic functions and integrals
26D07 Inequalities involving other types of functions
33D05 \(q\)-gamma functions, \(q\)-beta functions and integrals

Software:

DLMF
Full Text: DOI

References:

[1] Lawden DF, Applied Mathematics Series 80 (1989)
[2] Carlson BC. Special functions of applied mathematics. New York: Academic Press; 1977.
[3] Olver FWJ, Lozier DW, Boisvert RF, Clark CW, editors. NIST handbook of mathematical functions. New York: Cambridge University Press; 2010.
[4] DOI: 10.2307/2695616 · Zbl 1129.33315 · doi:10.2307/2695616
[5] DOI: 10.1016/j.jmaa.2011.06.063 · Zbl 1232.34029 · doi:10.1016/j.jmaa.2011.06.063
[6] Drábek P, Differential Integral Equations 12 pp 773– (1999)
[7] DOI: 10.1016/j.jat.2012.06.003 · Zbl 1257.33052 · doi:10.1016/j.jat.2012.06.003
[8] Bhayo BA, Issues Anal 2 (20) pp 13– (2013) · doi:10.15393/j3.art.2013.2322
[9] DOI: 10.1016/j.jat.2011.09.004 · Zbl 1241.42019 · doi:10.1016/j.jat.2011.09.004
[10] DOI: 10.1016/j.jat.2013.06.005 · Zbl 1292.33003 · doi:10.1016/j.jat.2013.06.005
[11] Klén R, J Inequal Appl (2010)
[12] DOI: 10.1016/j.jmaa.2013.07.021 · Zbl 1306.33013 · doi:10.1016/j.jmaa.2013.07.021
[13] Lindqvist P, Ricerche Mat 44 (2) pp 269– (1995)
[14] DOI: 10.1016/j.amc.2013.12.136 · Zbl 1410.33001 · doi:10.1016/j.amc.2013.12.136
[15] Neuman E, Int J Anal (2014)
[16] DOI: 10.1080/10652460903345961 · Zbl 1193.33234 · doi:10.1080/10652460903345961
[17] DOI: 10.1080/10652469.2011.590807 · Zbl 1253.33021 · doi:10.1080/10652469.2011.590807
[18] DOI: 10.1080/10652469.2012.720254 · Zbl 1279.33028 · doi:10.1080/10652469.2012.720254
[19] DOI: 10.1080/10652469.2013.838761 · Zbl 1283.26007 · doi:10.1080/10652469.2013.838761
[20] Neuman E, Internat J Math Math Sci (2014)
[21] Neuman E, Math Pannon 18 pp 77– (2007)
[22] Neuman E, Math Pannon 23 pp 65– (2012)
[23] DOI: 10.1016/j.amc.2012.01.041 · Zbl 1241.33018 · doi:10.1016/j.amc.2012.01.041
[24] DOI: 10.1080/10652469.2012.684054 · Zbl 1273.26020 · doi:10.1080/10652469.2012.684054
[25] DOI: 10.1090/S0002-9939-1966-0188497-6 · doi:10.1090/S0002-9939-1966-0188497-6
[26] DOI: 10.1007/978-3-642-99970-3 · Zbl 0199.38101 · doi:10.1007/978-3-642-99970-3
[27] Niculescu CP, Math Inequal Appl 3 (2) pp 155– (2000)
[28] Montel P, J Math 9 pp 26– (1928)
[29] Zhang X-M, Chu Y-M. New discussion of analytic inequalities (in Chinese). Harbin: Harbin Institute of Technology Press; 2009.
[30] Pečarić JE, Proschan F, Tong YI. Convex functions, partial orderings and statistical applications. Boston: Academic Press; 1992.
[31] DOI: 10.7153/jmi-07-37 · Zbl 1280.26006 · doi:10.7153/jmi-07-37
[32] DOI: 10.1080/10652469.2011.627561 · Zbl 1258.33012 · doi:10.1080/10652469.2011.627561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.