×

Neuro-adaptive command filter control of stochastic time-delayed nonstrict-feedback systems with unknown input saturation. (English) Zbl 1447.93168

Summary: This paper addresses the problem of adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear time-delayed systems with unknown input saturation and unknown disturbance input. A smooth function is selected to approximate the non-smooth saturation function. By using the command filter method scheme, the well-known problem of the explosion of complexity, which appears in the classical backstepping methods, is avoided. To approximate the unknown nonlinear functions, the radial basis function neural networks (NNs) are deployed. In addition, considering the minimal learning parameter method makes the updating law independent of the number of neural nodes and the order of the system. By using the mean-value theorem, the adaptive NN tracking control law is obtained systematically regardless of pre-known knowledge of input saturation bounds. The proposed control scheme guarantees that the state trajectories of the closed-loop system are semi-global uniformly ultimately bounded in probability and the tracking error finally stays in a small neighborhood around the origin. Eventually, numerical and practical examples show the performance of the proposed controller design.

MSC:

93C40 Adaptive control/observation systems
93E03 Stochastic systems in control theory (general)
93C43 Delay control/observation systems
93B52 Feedback control
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Kumar, P. R.; Varaiya, P., Stochastic Systems: Estimation, Identification, and Adaptive Control (2015), SIAM · Zbl 0706.93057
[2] Wang, J.; Liu, Z.; Zhang, Y.; Chen, C. P.; Lai, G., Adaptive neural control of a class of stochastic nonlinear uncertain systems with guaranteed transient performance, IEEE Trans. Cybern., 50, 7, 2971-2981 (2019)
[3] Huo, X.; Ma, L.; Zhao, X.; Zong, G., Observer-based fuzzy adaptive stabilization of uncertain switched stochastic nonlinear systems with input quantization, J. Franklin. Inst., 356, 4, 1789-1809 (2019) · Zbl 1409.93062
[4] Min, H.; Xu, S.; Zhang, B.; Ma, Q., Output-Feedback Control for Stochastic Nonlinear Systems Subject to Input Saturation and Time-Varying Delay, IEEE Trans. Autom. Control, 64, 1, 359-364 (2019) · Zbl 1423.93401
[5] Niu, B.; Wang, D.; Li, H.; Xie, X.; Alotaibi, N. D.; Alsaadi, F. E., A novel neural-network-based adaptive control scheme for output-constrained stochastic switched nonlinear systems, IEEE Trans. Syst. Man Cybern. Syst., 49, 2, 418-432 (2019)
[6] Deng, H.; Krstic, M., Output-feedback stochastic nonlinear stabilization, IEEE Trans. Autom. Control, 44, 2, 328-333 (1999) · Zbl 0958.93095
[7] Duan, N.; Xie, X.-. J., Further results on output-feedback stabilization for a class of stochastic nonlinear systems, IEEE Trans. Autom. Control, 56, 5, 1208-1213 (2011) · Zbl 1368.93533
[8] Yue, H.; Li, J.; Shi, J.; Yang, W., Adaptive fuzzy tracking control for stochastic nonlinear systems with time-varying input delays using the quadratic functions, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 26, 01, 109-142 (2018) · Zbl 1470.93094
[9] Kamali, S.; Tabatabaei, S. M.; Arefi, M. M.; Jahed‐Motlagh, M. R., Prescribed performance adaptive neural output control for a class of switched nonstrict-feedback nonlinear time-delay systems: state-dependent switching law approach, Int. J. Robust Nonlinear Control, 29, 6, 1734-1757 (2019) · Zbl 1416.93104
[10] Wang, H.; Liu, P. X.; Bao, J.; Xie, X.-. J.; Li, S., Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances, IEEE Trans. Neural Netw. Learn. Syst., 31, 3, 972-983 (2020)
[11] Askari, M. R.; Shahrokhi, M.; Talkhoncheh, M. K., Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation, Fuzzy Sets Syst., 314, 24-45 (2017) · Zbl 1368.93319
[12] Niu, B.; Li, H.; Zhang, Z.; Li, J.; Hayat, T.; Alsaadi, F. E., Adaptive neural-network-based dynamic surface control for stochastic interconnected nonlinear nonstrict-feedback systems with dead zone, IEEE Trans. Syst. Man Cybern.: Syst., 99, 1-13 (2018)
[13] Wang, H.; Liu, S.; Yang, X., Adaptive neural control for non-strict-feedback nonlinear systems with input delay, Inf. Sci. (Ny), 51, 4, 605-616 (2020) · Zbl 1461.93408
[14] Shojaei, F.; Arefi, M. M.; Khayatian, A.; Karimi, H. R., Observer-based fuzzy adaptive dynamic surface control of uncertain nonstrict feedback systems with unknown control direction and unknown dead-zone, IEEE Trans. Syst. Man. Cybern.: Syst., 49, 11, 2340-2351 (2018)
[15] Zouari, F.; Ibeas, A.; Boulkroune, A.; Cao, J.; Arefi, M. M., Adaptive neural output-feedback control for nonstrict-feedback time-delay fractional-order systems with output constraints and actuator nonlinearities, Neural Netw., 105, 256-276 (2018) · Zbl 1441.93158
[16] Wang, H.; Chen, B.; Liu, K.; Liu, X.; Lin, C., Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis, IEEE Trans. Neural Netw. Learn. Syst., 25, 5, 947-958 (2014)
[17] Chen, B.; Liu, X. P.; Ge, S. S.; Lin, C., Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach, IEEE Trans. Fuzzy Syst., 20, 6, 1012-1021 (2012)
[18] Sun, Y.; Chen, B.; Lin, C.; Wang, H., Adaptive neural control for a class of stochastic non-strict-feedback nonlinear systems with time-delay, Neurocomputing, 214, 750-757 (2016)
[19] Zhao, X.; Wang, X.; Ma, L.; Zong, G., Fuzzy-approximation-based asymptotic tracking control for a class of uncertain switched nonlinear systems, IEEE Trans. Fuzzy Syst., 28, 4, 632-644 (2020)
[20] Li, D.; Liu, L.; Liu, Y.-. J.; Tong, S.; Chen, C. P., Adaptive NN control without feasibility conditions for nonlinear state constrained stochastic systems with unknown time delays, IEEE Trans. Cybern. (2019)
[21] Yang, Y.; Ren, J., Adaptive fuzzy robust tracking controller design via small gain approach and its application, IEEE Trans. Fuzzy Syst., 11, 6, 783-795 (2003)
[22] Yang, Y.; Feng, G.; Ren, J., A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems, IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum., 34, 3, 406-420 (2004)
[23] Chen, B.; Liu, X.; Liu, K.; Lin, C., Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45, 6, 1530-1535 (2009) · Zbl 1166.93341
[24] Tong, S.; Li, Y.; Li, Y.; Liu, Y., Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Trans. Syst. Man Cybern. Part B (Cybernetics), 41, 6, 1693-1704 (2011)
[25] Wang, H.; Chen, B.; Liu, X.; Liu, K.; Lin, C., Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints, IEEE Trans. Cybern., 43, 6, 2093-2104 (2013)
[26] Peydayesh, A.; Arefi, M. M.; Modares, H., Distributed neuro-adaptive control protocols for non-strict feedback non-linear MASs with input saturation, IET Control Theory Appl., 12, 11, 1611-1620 (2018)
[27] Zhang, H.; Zhang, G., Adaptive backstepping sliding mode control for nonlinear systems with input saturation, Trans. Tianjin Univ., 18, 1, 46-51 (2012)
[28] Wen, C.; Zhou, J.; Liu, Z.; Su, H., Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance, IEEE Trans. Autom. Control, 56, 7, 1672-1678 (2011) · Zbl 1368.93317
[29] Apostol, T. M., Mathematical Analysis (1974), Addison-Wesley Reading: Addison-Wesley Reading MA · Zbl 0309.26002
[30] Liu, S.-. J.; Zhang, J.-. F.; Jiang, Z.-. P., Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 43, 2, 238-251 (2007) · Zbl 1115.93076
[31] Yu, Z.; Du, H., Adaptive neural control for uncertain stochastic nonlinear strict-feedback systems with time-varying delays: a Razumikhin functional method, Neurocomputing, 74, 12-13, 2072-2082 (2011)
[32] Deng, H.; Krstić, M., Stochastic nonlinear stabilization—I: a backstepping design, Syst. Control Lett., 32, 3, 143-150 (1997) · Zbl 0902.93049
[33] Polycarpou, M. M.; Ioannou, P. A., A robust adaptive nonlinear control design, (Proceedings of the American Control Conference (1993), IEEE), 1365-1369
[34] Ge, S. S.; Tee, K. P., Approximation-based control of nonlinear MIMO time-delay systems, Automatica, 43, 1, 31-43 (2007) · Zbl 1137.93042
[35] Sun, Y.; Chen, B.; Lin, C.; Wang, H.; Zhou, S., Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach, Inf Sci (Ny), 369, 748-764 (2016) · Zbl 1429.93188
[36] Deng, H.; Krstic, M.; Williams, R. J., Stabilization of stochastic nonlinear systems driven by noise of unknown covariance, IEEE Trans. Autom. Control, 46, 8, 1237-1253 (2001) · Zbl 1008.93068
[37] Farrell, J. A.; Polycarpou, M.; Sharma, M.; Dong, W., Command filtered backstepping, IEEE Trans. Autom. Control, 54, 6, 1391-1395 (2009) · Zbl 1367.93382
[38] Wang, T.; Qiu, J.; Gao, H., Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints, IEEE Trans. Syst. Man Cybern.: Syst., 47, 8, 1875-1883 (2017)
[39] Shi, X.; Lim, C.-. C.; Shi, P.; Xu, S., Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone, IEEE Trans. Neural Netw. Learn. Syst., 29, 11, 5200-5213 (2018)
[40] Si, W.; Dong, X., Adaptive neural control for nonstrict-feedback time-delay systems with input and output constraints, Int. J. Mach. Learn. Cybern., 9, 9, 1533-1540 (2018)
[41] Yi, J.; Li, J.; Li, J., Adaptive fuzzy output feedback control for nonlinear nonstrict-feedback time-delay systems with full state constraints, Int. J. Fuzzy Syst., 20, 6, 1730-1744 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.