×

Accelerating inference for stochastic kinetic models. (English) Zbl 07711788

Summary: Stochastic kinetic models (SKMs) are increasingly used to account for the inherent stochasticity exhibited by interacting populations of species in areas such as epidemiology, population ecology and systems biology. Species numbers are modelled using a continuous-time stochastic process, and, depending on the application area of interest, this will typically take the form of a Markov jump process or an Itô diffusion process. Widespread use of these models is typically precluded by their computational complexity. In particular, performing exact fully Bayesian inference in either modelling framework is challenging due to the intractability of the observed data likelihood, necessitating the use of computationally intensive techniques such as particle Markov chain Monte Carlo (particle MCMC). It is proposed to increase the computational and statistical efficiency of this approach by leveraging the tractability of an inexpensive surrogate derived directly from either the jump or diffusion process. The surrogate is used in three ways: in the design of a gradient-based parameter proposal, to construct an appropriate bridge and in the first stage of a delayed-acceptance step. The resulting approach, which exactly targets the posterior of interest, offers substantial gains in efficiency over a standard particle MCMC implementation.

MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

CODA

References:

[1] Andrieu, C.; Doucet, A.; Holenstein, R., Particle Markov chain Monte Carlo for efficient numerical simulation, (L’Ecuyer, P.; Owen, A. B., Monte Carlo and Quasi-Monte Carlo Methods 2008 (2009), Spinger-Verlag Berlin Heidelberg), 45-60 · Zbl 1184.65001
[2] Banterle, M.; Grazian, C.; Lee, A.; Robert, C. P., Accelerating Metropolis-Hastings algorithms by delayed acceptance, Found. Data Sci., 1, 103-128 (2019)
[3] Bérard, J.; Del Moral, P.; Doucet, A., A lognormal central limit theorem for particle approximations of normalizing constants, Electron. J. Probab., 19, 1-28 (2014) · Zbl 1308.65014
[4] Boys, R. J.; Wilkinson, D. J.; Kirkwood, T. B.L., Bayesian inference for a discretely observed stochastic kinetic model, Stat. Comput., 18, 125-135 (2008)
[5] Calderhead, B.; Girolami, M., Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods, Interface Focus, 1, 821-835 (2011)
[6] Christen, J. A.; Fox, C., Markov chain Monte Carlo using an approximation, J. Comput. Graph. Stat., 14, 795-810 (2005)
[7] Dahlin, J.; Lindsten, F.; Kronander, J.; Schon, T. B., Accelerating pseudo-marginal Metropolis-Hastings by correlating auxiliary variables (2015), Available from
[8] Del Moral, P., Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications (2004), Springer: Springer New York · Zbl 1130.60003
[9] Del Moral, P.; Jasra, A.; Lee, A.; Yau, C.; Zhang, X., The alive particle filter and its use in particle Markov chain Monte Carlo, Stoch. Anal. Appl., 33, 943-974 (2015) · Zbl 1337.82019
[10] Deligiannidis, G.; Doucet, A.; Pitt, M. K., The correlated pseudo-marginal method, J. R. Stat. Soc., Ser. B, Stat. Methodol., 80, 839-870 (2018) · Zbl 1407.62074
[11] Doucet, A.; Pitt, M. K.; Deligiannidis, G.; Kohn, R., Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator, Biometrika, 102, 295-313 (2015) · Zbl 1452.62055
[12] Duane, S.; Kennedy, A. D.; Pendleton, B. J.; Roweth, D., Hybrid Monte Carlo, Phys. Lett. B, 195, 216-222 (1987)
[13] Durham, G. B.; Gallant, R. A., Numerical techniques for maximum likelihood estimation of continuous time diffusion processes, J. Bus. Econ. Stat., 20, 279-316 (2002)
[14] Fearnhead, P.; Giagos, V.; Sherlock, C., Inference for reaction networks using the linear noise approximation, Biometrics, 70, 457-466 (2014) · Zbl 1419.62346
[15] Fielding, M.; Nott, D. J.; Liong, S. Y., Efficient MCMC schemes for computationally expensive posterior distributions, Technometrics, 53, 16-28 (2011)
[16] Fuchs, C., Inference for Diffusion Processes with Applications in Life Sciences (2013), Springer: Springer Heidelberg · Zbl 1276.62051
[17] Georgoulas, A.; Hillston, J.; Sanguinetti, G., Unbiased Bayesian inference for population Markov jump processes via random truncations, Stat. Comput., 27, 991-1002 (2017) · Zbl 1384.62283
[18] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340-2361 (1977)
[19] Golightly, A.; Bradley, E.; Lowe, T.; Gillespie, C. S., Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models, Comput. Stat. Data Anal., 136, 92-107 (2019) · Zbl 1507.62064
[20] Golightly, A.; Henderson, D. A.; Sherlock, C., Delayed acceptance particle MCMC for exact inference in stochastic kinetic models, Stat. Comput., 25, 1039-1055 (2015) · Zbl 1332.60117
[21] Golightly, A.; Sherlock, C., Efficient sampling of conditioned Markov jump processes, Stat. Comput., 29, 1149-1163 (2019) · Zbl 1430.62032
[22] Golightly, A.; Wilkinson, D. J., Bayesian inference for Markov jump processes with informative observations, Stat. Appl. Genet. Mol. Biol., 14, 169-188 (2015) · Zbl 1311.92089
[23] Gordon, N. J.; Salmond, D. J.; Smith, A. F.M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proc. F, 140, 107-113 (1993)
[24] Graham, M. M.; Storkey, A. J., Asymptotically exact inference in differentiable generative models, Electron. J. Stat., 11, 5105-5164 (2017) · Zbl 1380.65025
[25] Ho, L. S.T.; Xu, J.; Crawford, F. W.; Minin, V. N.; Suchard, M. A., Birth/birth-death processes and their computable transition probabilities with biological applications, J. Math. Biol., 76, 911-944 (2018) · Zbl 1384.60094
[26] van Kampen, N. G., Stochastic Processes in Physics and Chemistry (2001), North-Holland · Zbl 0974.60020
[27] Keeling, M.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2007), Princeton University Press: Princeton University Press New Jersey · Zbl 1279.92038
[28] Koblents, E.; Miguez, J., A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models, Stat. Comput., 25, 407-425 (2015) · Zbl 1331.65015
[29] Komorowski, M.; Finkenstadt, B.; Harper, C.; Rand, D., Bayesian inference of biochemical kinetic parameters using the linear noise approximation, BMC Bioinform., 10, 343 (2009)
[30] Kurtz, T. G., The relationship between stochastic and deterministic models for chemical reactions, J. Chem. Phys., 57, 2976-2978 (1972)
[31] Lin, J.; Ludkovski, M., Sequential Bayesian inference in hidden Markov stochastic kinetic models with application to detection and response to seasonal epidemics, Stat. Comput., 24, 1047-1062 (2013) · Zbl 1332.62272
[32] Marnissi, Y.; Chouzenoux, E.; Benazza-Benyahia, A.; Pesquet, J., Majorize-minimize adapted Metropolis-Hastings algorithm, IEEE Trans. Signal Process., 68, 2356-2369 (2020) · Zbl 07590898
[33] Matis, J. H.; Kiffe, T. R.; Matis, T. I.; Stevenson, D. E., Application of population growth models based on cumulative size to pecan aphids, J. Agric. Biol. Environ. Stat., 11, 425-449 (2006)
[34] McKinley, T. J.; Ross, J. V.; Deardon, R.; Cook, A. R., Simulation-based Bayesian inference for epidemic models, Comput. Stat. Data Anal., 71, 434-447 (2014) · Zbl 1471.62137
[35] McQuarrie, D. A., Stochastic approach to chemical kinetics, J. Appl. Probab., 4, 413-478 (1967) · Zbl 0231.60090
[36] Minas, G.; Rand, D. A., Long-time analytic approximation of large stochastic oscillators: simulation, analysis and inference, PLoS Comput. Biol., 13, Article e1005676 pp. (2017)
[37] Nemeth, C.; Sherlock, C.; Fearnhead, P., Particle Metropolis-adjusted Langevin algorithms, Biometrika, 103, 701-717 (2016) · Zbl 1506.62135
[38] O’Neill, P. D.; Roberts, G. O., Bayesian inference for partially observed stochastic epidemics, J. R. Stat. Soc. A, 162, 121-129 (1999)
[39] Owen, J.; Wilkinson, D. J.; Gillespie, C. S., Likelihood free inference for Markov processes: a comparison, Stat. Appl. Genet. Mol. Biol., 14, 189-209 (2015) · Zbl 1311.60079
[40] Owen, J.; Wilkinson, D. J.; Gillespie, C. S., Scalable inference for Markov processes with intractable likelihoods, Stat. Comput., 25, 145-156 (2015) · Zbl 1331.62065
[41] Pitt, M. K.; dos Santos Silva, R.; Giordani, P.; Kohn, R., On some properties of Markov chain Monte Carlo simulation methods based on the particle filter, J. Econom., 171, 134-151 (2012) · Zbl 1443.62499
[42] Plummer, M.; Best, N.; Cowles, K.; Vines, K., CODA: convergence diagnosis and output analysis for MCMC, R News, 6, 7-11 (2006)
[43] Poyiadjis, G.; Doucet, A.; Singh, S. S., Particle approximations of the score and observed information matrix in state space models with application to parameter estimation, Biometrika, 98, 65-80 (2011) · Zbl 1214.62093
[44] Prajeshnu, A nonlinear statistical model for aphid population growth, J. Indian Soc. Agric. Stat., 51, 73-80 (1998) · Zbl 1188.62317
[45] Quiroz, M.; Tran, M. N.; Villani, M.; Kohn, R., Speeding up MCMC by delayed acceptance and data subsampling, J. Comput. Graph. Stat., 27, 12-22 (2018) · Zbl 07498963
[46] Raggett, G., A stochastic model of the Eyam plague, J. Appl. Stat., 9, 212-225 (1982) · Zbl 0498.92018
[47] Rasmussen, C. E., Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian integrals, (Bernardo, J. M.; Bayarri, M. J.; Berger, J. O.; Dawid, A. P.; Heckerman, D.; Smith, A. F.M.; West, M., Bayesian Statistics 7 (2003), Oxford University Press), 651-659
[48] Roberts, G. O.; Rosenthal, J. S., Optimal scaling of discrete approximations to Langevin diffusions, J. R. Stat. Soc., Ser. B, Stat. Methodol., 60, 255-268 (1998) · Zbl 0913.60060
[49] Roberts, G. O.; Stramer, O., Langevin diffusions and Metropolis-Hastings algorithms, Methodol. Comput. Appl. Probab., 4, 337-357 (2002) · Zbl 1033.65003
[50] Roberts, G. O.; Tweedie, R. L., Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli, 2, 341-363 (1996) · Zbl 0870.60027
[51] Ryder, T.; Prangle, D.; Golightly, A.; Matthews, I., The neural moving average model for scalable variational inference of state space models, (Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, PMLR (2021)), 12-22
[52] Schmon, S. M.; Deligiannidis, G.; Doucet, A.; Pitt, M. K., Large sample asymptotics of the pseudo-marginal method, Biometrika, 108, 37-51 (2021) · Zbl 1462.62072
[53] Sherlock, C.; Thiery, A.; Golightly, A., Efficiency of delayed-acceptance random walk Metropolis algorithms, Ann. Stat., 49, 2972-2990 (2021) · Zbl 1478.60093
[54] Sherlock, C.; Thiery, A.; Roberts, G. O.; Rosenthal, J. S., On the effciency of pseudo-marginal random walk Metropolis algorithms, Ann. Stat., 43, 238-275 (2015) · Zbl 1326.65015
[55] Stathopoulos, V.; Girolami, M. A., Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation, Philos. Trans. R. Soc. A, 371, Article 20110541 pp. (2013) · Zbl 1353.60075
[56] Stramer, O.; Bognar, M., Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach, Bayesian Anal., 6, 231-258 (2011) · Zbl 1330.60092
[57] Sun, L.; Lee, C.; Hoeting, J. A., Parameter inference and model selection in deterministic and stochastic dynamical models via approximate Bayesian computation: modeling a wildlife epidemic, Environmetrics, 26, 451-462 (2015) · Zbl 1525.62219
[58] Tran, M. N.; Kohn, R.; Quiroz, M.; Villani, M., Block-wise pseudo-marginal Metropolis-Hastings (2016), Available from
[59] Wallace, E. W.; Gillespie, D. T.; Sanft, K. R.; Petzold, L. R., Linear noise approximation is valid over limited times for any chemical system that is sufficiently large, IET Syst. Biol., 6, 102-115 (2012)
[60] Whitaker, G. A.; Golightly, A.; Boys, R. J.; Sherlock, C., Bayesian inference for diffusion driven mixed-effects models, Bayesian Anal., 12, 435-463 (2017) · Zbl 1384.62109
[61] Whitaker, G. A.; Golightly, A.; Boys, R. J.; Sherlock, C., Improved bridge constructs for stochastic differential equations, Stat. Comput., 27, 885-900 (2017) · Zbl 1384.65011
[62] Wilkinson, D. J., Stochastic Modelling for Systems Biology (2018), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton, Florida
[63] Wu, Q.; Smith-Miles, K.; Tian, T., Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density, BMC Bioinform., 15, S3 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.