×

Existence and concentration of solutions to Kirchhoff-type equations in \(\mathbb{R}^2\) with steep potential well vanishing at infinity and exponential critical nonlinearities. (English) Zbl 1519.35163

Summary: We are concerned with the following Kirchhoff-type equation with exponential critical nonlinearities \[ -\left(a+b \int\limits_{\mathbb{R}^2} | \nabla u|^2 \mathrm{d} x\right)\Delta u+(h(x)+\mu V(x))u=K(x)f(u) \text{ in } \mathbb{R}^2, \] where \(a,b,\mu > 0\), the potential \(V\) has a bounded set of zero points and decays at infinity as \(| x |^{-\gamma}\) with \(\gamma \in (0,2)\), the weight \(K\) has finite singular points and may have exponential growth at infinity. By using the truncation technique and working in some weighted Sobolev space, we obtain the existence of a mountain pass solution for \(\mu > 0\) large and the concentration behavior of solutions as \(\mu \to +\infty\).

MSC:

35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

References:

[1] A. Adimurthi and K. Adimurthi, A singular Moser-Trudinger embedding and its applications, Nonlinear Differ. Equ. Appl. 13 (2007), 585-603. · Zbl 1171.35367
[2] F. S. B. Albuquerque, J. L. Carvalho, G. M. Figueiredo, and E. S. Medeiros, On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations 60 (2021), 40. · Zbl 1459.35146
[3] F. S. B. Albuquerque, M. C. Ferreira, and U. B. Severo, Ground state solutions for a nonlocal equation in R2 involving vanishing potentials and exponential critical growth, Milan J. Math. 89 (2021), 263-294. · Zbl 1481.35227
[4] C. O. Alves and G. M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in RN, Nonlinear Anal. 75 (2012), 2750-2759. · Zbl 1264.45008
[5] C. O. Alves, M. A. S. Souto, and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations 43 (2012), 537-554. · Zbl 1237.35037
[6] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. · Zbl 0273.49063
[7] T. Bartsch, A. Pankov, and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001), 549-569. · Zbl 1076.35037
[8] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on RN, Comm. Partial Differential Equations 20 (1995), 1725-1741. · Zbl 0837.35043
[9] T. Bartsch and Z.-Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys. 51 (2000), 366-384. · Zbl 0972.35145
[10] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, USA, 2010. · Zbl 1218.46002
[11] S. Chen and Z-Q. Wang, Existence and multiple solutions for a critical quasilinear equation with singular potentials, Nonlinear Differ. Equ. Appl. 22 (2015), 699-719. · Zbl 1323.35041
[12] S. T. Chen, B. L. Zhang, and X. H. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal. 9 (2020), 148-167. · Zbl 1421.35100
[13] M. Clapp and Y. H. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys. 55 (2004), 592-605. · Zbl 1060.35130
[14] D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), 139-153. · Zbl 0820.35060
[15] Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations 29 (2007), 397-419. · Zbl 1119.35082
[16] Y. H. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscripta Mathematica 112 (2003), 109-135. · Zbl 1038.35114
[17] G. M. Figueiredo, N. Ikoma, and J. R. S. Júnior, Existence and concentration result for the Kirchhoff equations with general nonlinearities, Arch. Ration. Meth. Anal. 213 (2014), 931-979. · Zbl 1302.35356
[18] G. M. Figueiredo and U. B. Severo, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), 23-39. · Zbl 1348.35064
[19] Y. Guo and Z. Tang, Multi-bump solutions for Schrödinger equation involving critical growth and potential wells, Discrete Contin. Dyn. Syst. 35 (2015), 3393-3415. · Zbl 1346.35071
[20] Y. Guo and Z. Tang, Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Differential Equations 259 (2015), 6038-6071. · Zbl 1326.35347
[21] W. He, D. D. Qin, and Q. F. Wu, Existence, multiplicity and nonexistence results for Kirchhoff-type equations, Adv. Nonlinear Anal. 10 (2021), 616-635. · Zbl 1466.35161
[22] C. Ji, F. Fang, and B. L. Zhang, A multiplicity result for asymptotically linear Kirchhoff equations, Adv. Nonlinear Anal. 8 (2019), 267-277. · Zbl 1419.35037
[23] Y. Li, F. Li, and J. Shi, Existence of a positive solution to Kirchhoff-type problems without compactness conditions, J. Differential Equations 253 (2012), 2285-2294. · Zbl 1259.35078
[24] Z. Liu, and S. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl. 426 (2015), 267-287. · Zbl 1312.35109
[25] Y. H. Long, Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory, Adv. Nonlinear Anal. 11 (2022), 1352-1364. · Zbl 1497.39005
[26] J. Marcos do Ó, P. K. Mishra, and J. J. Zhang, Solutions concentrating around the saddle points of the potential for two-dimensional Schrödinger-equations, Z. Angew. Math. Phys. 70 (2019), 64. · Zbl 1415.35015
[27] J. Marcos do Ó, F. Sani, and J. J. Zhang, Stationary nonlinear Schrödinger-equations in R2 with potentials vanishing at infinity, Annali di Matematica. 196 (2017), 363-393. · Zbl 1365.35168
[28] J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J. 20 (1971), 1077-1092. · Zbl 0203.43701
[29] B. Ruf and F. Sani, Geometric Properties for Parabolic and Elliptic PDE’s, Springer-Verlag, Italia, 2013. · Zbl 1257.35001
[30] Y. Sato and K. Tanaka, Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, Trans. Am. Math. Soc. 361 (2009), 6205-6253. · Zbl 1198.35261
[31] C. A. Stuart and H. S. Zhou, Global branch of solutions for non-linear Schrödinger equations with deepening potential well, Proc. London Math. Soc. 92 (2006), 655-681. · Zbl 1225.35091
[32] N. S. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484. · Zbl 0163.36402
[33] F. A. van Heerden and Z.-Q. Wang, Schrödinger type equations with asymptotically linear nonlinearities, Differential Integral Equations 16 (2003), 257-280. · Zbl 1030.35067
[34] F. A. van Heerden, Multiple solutions for a Schrödinger type equation with an asymptotically linear term, Nonlinear Anal. 55 (2003), 739-758. · Zbl 1145.35374
[35] M. Xiang, B. L. Zhang, and V. D. Rădulescu, Superlinear Schrödinger-Kirchhoff-type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal. 9 (2020), 690-709. · Zbl 1427.35340
[36] Y. Yang and X. Zhu, A new proof of subcritical Trudinger-Moser inequalities on the whole Euclidean space, J. Partial Differ. Equ. 26 (2013), 300-304. · Zbl 1313.46045
[37] J. J. Zhang, D. G. Costa, and J. Marcos do Ó, Existence and concentration of positive solutions for nonlinear Kirchhoff-type problems with a general critical nonlinearity, Proc. Edinb. Math. Soc. 61 (2018), 1023-1040. · Zbl 1421.35122
[38] F. B. Zhang and M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff-type problems with steep potential well, J. Differential Equations 269 (2020), 10085-10106. · Zbl 1448.35202
[39] J. Zhang and Z. L. Lou, Existence and concentration behavior of solutions to Kirchhoff-type equation with steep potential well and critical growth, J. Math. Phys. 62 (2021), 011506. · Zbl 1458.35395
[40] L. M. Zhang, X. H. Tang, and P. Chen, On the planar Kirchhoff-type problem involving supercritical exponential growth, Adv. Nonlinear Anal. 11 (2022), 1412-1446. · Zbl 1501.35212
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.