×

Relaxation dynamics of capillary folding of thin elastic sheets with pinned contact lines. (English) Zbl 07789946

Summary: Capillary folding is the process of folding planar objects into three-dimensional (3-D) structures using capillary force. It has many important industrial applications, e.g. the fabrication of microelectromechanical systems. In this work, we propose a 3-D model for the capillary folding of thin elastic sheets with pinned contact lines. The energy of the system consists of interfacial energies between the different phases and the elastic energy of the sheet. The latter is described by the nonlinear Koiter’s model, which can accommodate large deformations of the sheet. From the energy, we derive the governing equations for the static system using a variational approach. We then develop a numerical method to find equilibrium solutions via a relaxation dynamics. At each time step, we evolve the sheet by using the subdivision element method, and update the droplet surface by minimizing a squared area functional using linear finite elements. Qualitatively, numerical solutions for the equilibrium configurations of the sheet-droplet system agree well with those observed in experiments. Furthermore, we identify the critical bendabilities and present bifurcation diagrams for the folding of a triangular sheet. The results exhibit rich and fully 3-D behaviours that were not captured by previous two-dimensional models. Our results provide new insights into the nonlinear process of capillary folding, and may contribute to the advancement of microfabrication techniques.

MSC:

76-XX Fluid mechanics

References:

[1] Alben, S., Gorodetsky, A.A., Kim, D. & Deegan, R.D.2019Semi-implicit methods for the dynamics of elastic sheets. J. Comput. Phys.399, 108952. · Zbl 1453.74081
[2] Barrett, J.W., Garcke, H. & Nürnberg, R.2017Finite element approximation for the dynamics of fluidic two-phase biomembranes. ESAIM51 (6), 2319-2366. · Zbl 1383.35153
[3] Barthès-Biesel, D.2016Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech.48 (1), 25-52. · Zbl 1356.76459
[4] Bico, J., Reyssat, É. & Roman, B.2018Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech.50 (1), 629-659. · Zbl 1384.76015
[5] Box, F., O’Kiely, D., Kodio, O., Inizan, M., Castrejón-Pita, A.A. & Vella, D.2019Dynamics of wrinkling in ultrathin elastic sheets. Proc. Natl Acad. Sci. USA116 (42), 20875-20880. · Zbl 1431.74081
[6] Bradley, A.T., Box, F., Hewitt, I.J. & Vella, D.2019Wettability-independent droplet transport by bendotaxis. Phys. Rev. Lett.122 (7), 074503.
[7] Brubaker, N.D.2019Two-dimensional capillary origami with inextensibility and free triple-contact points. SIAM J. Appl. Maths79 (2), 572-593. · Zbl 1412.49090
[8] Brubaker, N.D. & Lega, J.2015Two-dimensional capillary origami with pinned contact line. SIAM J. Appl. Maths75 (3), 1275-1300. · Zbl 1328.76016
[9] Brubaker, N.D. & Lega, J.2016Capillary-induced deformations of a thin elastic sheet. Philos. Trans. R. Soc. A374 (2066), 20150169. · Zbl 1353.74054
[10] Cerda, E. & Mahadevan, L.2003Geometry and physics of wrinkling. Phys. Rev. Lett.90 (7), 074302.
[11] Chen, C. & Zhang, T.2022Coupling lattice model and many-body dissipative particle dynamics to make elastocapillary simulation simple. Extreme Mech. Lett.54, 101741.
[12] Chen, J., Yu, T., Brogan, P., Kusner, R., Yang, Y. & Zigerelli, A.2020Numerical methods for biomembranes: conforming subdivision methods versus non-conforming PL methods. Math. Comput.90 (328), 471-516. · Zbl 1455.49023
[13] Ciarlet, P.G.2021Mathematical Elasticity: Theory of Shells. Society for Industrial and Applied Mathematics.
[14] Cirak, F. & Ortiz, M.2001Fully \(C^1\)-conforming subdivision elements for finite deformation thin-shell analysis. Intl J. Numer. Meth. Engng51 (7), 813-833. · Zbl 1039.74045
[15] Cirak, F., Ortiz, M. & Schröder, P.2000Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Intl J. Numer. Meth. Engng47 (12), 2039-2072. · Zbl 0983.74063
[16] Cohen, A.E. & Mahadevan, L.2003Kinks, rings, and rackets in filamentous structures. Proc. Natl Acad. Sci. USA100 (21), 12141-12146.
[17] Davidovitch, B. & Vella, D.2018Partial wetting of thin solid sheets under tension. Soft Matt.14 (24), 4913-4934.
[18] Du, Q., Liu, C. & Wang, X.2004A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys.198 (2), 450-468. · Zbl 1116.74384
[19] Engwirda, D. & Ivers, D.2016Off-centre Steiner points for Delaunay-refinement on curved surfaces. Computer-Aided Des.72, 157-171.
[20] Feng, F. & Klug, W.S.2006Finite element modeling of lipid bilayer membranes. J. Comput. Phys.220 (1), 394-408. · Zbl 1102.92011
[21] Guo, X., Li, H., Yeop Ahn, B., Duoss, E.B., Hsia, K.J., Lewis, J.A. & Nuzzo, R.G.2009Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proc. Natl Acad. Sci. USA106 (48), 20149-20154.
[22] Heil, M. & White, J.P.2002Airway closure: surface-tension-driven non-axisymmetric instabilities of liquid-lined elastic rings. J. Fluid Mech.462, 79-109. · Zbl 1156.74320
[23] Helfrich, W.1973Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C28 (11-12), 693-703.
[24] Huang, J., Juszkiewicz, M., De Jeu, W.H., Cerda, E., Emrick, T., Menon, N. & Russell, T.P.2007Capillary wrinkling of floating thin polymer films. Science317 (5838), 650-653.
[25] Juel, A., Pihler-Puzović, D. & Heil, M.2018Instabilities in blistering. Annu. Rev. Fluid Mech.50 (1), 691-714. · Zbl 1384.76019
[26] Karpitschka, S., Pandey, A., Lubbers, L.A., Weijs, J.H., Botto, L., Das, S., Andreotti, B. & Snoeijer, J.H.2016Liquid drops attract or repel by the inverted Cheerios effect. Proc. Natl Acad. Sci. USA113 (27), 7403-7407.
[27] Kiendl, J., Bletzinger, K.-U., Linhard, J. & Wüchner, R.2009Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Meth. Appl. Mech. Engng198 (49-52), 3902-3914. · Zbl 1231.74422
[28] Kim, H.-Y. & Mahadevan, L.2006Capillary rise between elastic sheets. J. Fluid Mech.548 (1), 141-150.
[29] Koiter, W.T.1966On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wet. B69, 1-54.
[30] Lai, M.-C. & Ong, K.C.2019Unconditionally energy stable schemes for the inextensible interface problem with bending. SIAM J. Sci. Comput.41 (4), B649-B668. · Zbl 1428.65009
[31] Landau, L.D. & Lifshitz, E.M.1986Theory of Elasticity, 3rd edn. Elsevier Butterworth-Heinemann. · Zbl 0010.23102
[32] Li, M., Yang, Q., Liu, H., Qiu, M., Lu, T.J. & Xu, F.2016Capillary origami inspired fabrication of complex 3D hydrogel constructs. Small12 (33), 4492-4500.
[33] Loop, C.1987 Smooth subdivision surfaces based on triangles. Master’s thesis, The University of Utah.
[34] Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J.-P. & Böhringer, K.F.2009Self-assembly from milli- to nanoscales: methods and applications. J. Micromech. Microengng19 (8), 083001.
[35] Neukirch, S., Antkowiak, A. & Marigo, J.-J.2013The bending of an elastic beam by a liquid drop: a variational approach. Proc. R. Soc. A469 (2157), 20130066. · Zbl 1371.74175
[36] Olives, J.1996A combined capillarity and elasticity problem for a thin plate. SIAM J. Appl. Maths56 (2), 480-493. · Zbl 0853.73053
[37] Paulsen, J.D., Démery, V., Santangelo, C.D., Russell, T.P., Davidovitch, B. & Menon, N.2015Optimal wrapping of liquid droplets with ultrathin sheets. Nat. Mater.14 (12), 1206-1209.
[38] Péraud, J.-P. & Lauga, E.2014Geometry and wetting of capillary folding. Phys. Rev. E89 (4), 043011.
[39] Pihler-Puzović, D., Juel, A. & Heil, M.2014The interaction between viscous fingering and wrinkling in elastic-walled Hele-Shaw cells. Phys. Fluids26 (2), 022102. · Zbl 1321.76022
[40] Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B. & Baroud, C.N.2007Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett.98 (15), 156103. · Zbl 1182.76616
[41] Reis, P.M., Hure, J., Jung, S., Bush, J.W.M. & Clanet, C.2010Grabbing water. Soft Matt.6 (22), 5705-5708.
[42] Ren, W. & E, W.2007Boundary conditions for the moving contact line problem. Phys. Fluids19 (2), 022101. · Zbl 1146.76513
[43] Ren, W., Hu, D. & E, W.2010Continuum models for the contact line problem. Phys. Fluids22 (10), 102103. · Zbl 1308.76082
[44] Renka, R.J.2015A simple and efficient method for modeling constant mean curvature surfaces. SIAM J. Sci. Comput.37 (4), A2076-A2099. · Zbl 1347.49071
[45] Rivetti, M. & Neukirch, S.2012Instabilities in a drop-strip system: a simplified model. Proc. R. Soc. A468 (2141), 1304-1324.
[46] Schroll, R.D., Adda-Bedia, M., Cerda, E., Huang, J., Menon, N., Russell, T.P., Toga, K.B., Vella, D. & Davidovitch, B.2013Capillary deformations of bendable films. Phys. Rev. Lett.111 (1), 014301.
[47] Seol, Y., Hu, W.-F., Kim, Y. & Lai, M.-C.2016An immersed boundary method for simulating vesicle dynamics in three dimensions. J. Comput. Phys.322, 125-141. · Zbl 1351.76183
[48] Shanahan, M.E.R.1985Contact angle equilibrium on thin elastic solids. J. Adhes.18 (4), 247-267.
[49] Shanahan, M.E.R.1988The spreading dynamics of a liquid drop on a viscoelastic solid. J. Phys. D: Appl. Phys.21 (6), 981-985.
[50] Syms, R.R.A., Yeatman, E.M., Bright, V.M. & Whitesides, G.M.2003Surface tension-powered self-assembly of microstructures – the state-of-the-art. J. Microelectromech. Syst.12 (4), 387-417.
[51] Taroni, M. & Vella, D.2012Multiple equilibria in a simple elastocapillary system. J. Fluid Mech.712, 273-294. · Zbl 1275.76070
[52] Walker, S.W.2015The Shapes of Things: A Practical Guide to Differential Geometry and the Shape Derivative. Society for Industrial and Applied Mathematics. · Zbl 1336.53001
[53] Yao, J., Zhang, Z. & Ren, W.2023Modelling moving contact lines on inextensible elastic sheets in two dimensions. J. Fluid Mech.955, A25. · Zbl 1531.76095
[54] Zhang, Z., Yao, J. & Ren, W.2020Static interface profiles for contact lines on an elastic membrane with the Willmore energy. Phys. Rev. E102 (6), 062803.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.